Экономия электроэнергии резонансным трансформатором: Радикальная экономия электроэнергии переменного тока — КиберПедия – Снижение энергопотребления за счет применения трансформаторов ТМГСУ11

Экономия электроэнергии резонансным трансформатором: Радикальная экономия электроэнергии переменного тока — КиберПедия – Снижение энергопотребления за счет применения трансформаторов ТМГСУ11
Янв 06 2020
alexxlab

Содержание

Радикальная экономия электроэнергии переменного тока — КиберПедия

Радикальная экономия электроэнергии переменного тока

©Дудышев В.Д.

Самарский технический университет

Контакт савтором:[email protected]

http://www.dudishev2.narod.ru/

В статье сформулирована проблема и намечены пути радикального снижения электропотребления основных электроприемников переменного тока – трансформаторов и асинхронных электрических машин(АЭМ). Рассматриваются методы и устройства их энергетического совершенствования на основе принципа циркуляции реактивной мощности и др.

Предложены и обсуждаются оригинальные управляемые трансформаторы с единичным входным коэффициентом мощности(косинус фи). Предложены и анализируются электрические схемы АЭМ с единичным входным коэффициентом мощности.

Предложено конструктивное совмещение обмоток асинхронных электрических машин, обеспечивающих одновременно двигательно-генераторный режим АЭМ. Рассмотрены и иные варианты экономичных АЭМ в частности по схемам резонансных конденсаторных АЭМ с регуляторами и вентильных асинхронных электрических машин, позволяющих работать электрической машине с минимальным электропотреблением из сети, одновременно в режиме двигателя и генератора, и в режиме “вечного двигателя“(ВД). Предложена самовращающаяся асинхронная вентильная электромашина, работающая одновременно в режиме мотора и генератора, с самовозбуждением и самообеспечением электроэнергией и механической энергией.

Такой необычный совмещенный режим работы АЭМ в режиме “ВД” достигается посредством конструктивного совмещения электродвигателя и электрогенератора в одном электромеханическом устройстве на основе совмещения многофазных статорных обмоток с разным числом пар полюсов. Рассмотрен вариант экономичной резонансной многообмоточной асинхронной электрической машины с введением резонансных конденсаторов между статорными обмотками. Определены условия, при которых одна из ее обмоток работает в генераторном режиме Рассмотрены и прочие оригинальные варианты экономичных трансформаторов и электрических машин (АЭМ) на основе асинхронных электрических вентильных машин.. Предложен оригинальный коммутатор в статорных индуктивных обмотках, обеспечивающий самогенерацию электроэнергии Предлагаемые революционные технические новшества позволяют значительно экономить электроэнергию и в пределе обеспечить 100% экономию электроэнергии в режиме автономного самоэлектрообеспечения этих известных устройств посредством кольцевания энергии в обмотках за счет полезного использования явления самоиндукции при разрыве индуктивностей с электрическим током в моменты его максимума . .



___________________________________________________________________________________________________________________________________________

Введение

Электроэнергия повсеместно дорожает, а ее потребление в мире непрерывно увеличивается . Более 80 % электроэнергии потребляется в мире именно на переменном токе. Поэтому актуальной проблемой мировой энергетики является снижение электропотребления и повышение коэффициента полезного действия кпд всех электроприемников переменного тока. Практически все эти электроприемники обладают индуктивностями .Трансформаторы и асинхронные электрические машины переменного тока –это самые массовые индуктивные электроприемники. Их применяют повсеместно от бытовой электротехники, компьютеров, городской электросети до тягового ж/д электропривода и электропривода прокатных станов. Все они потребляет излишнюю электроэнергию. Асинхронные электрические машины наиболее распространены в мире благодаря простоте конструкции и хорошим регулировочным свойствам.

Основные определения

Трансформатор переменного тока — с

татическое электромагнитное устройство, имеющее две или более индуктивно- связанных обмоток, предназначенный чаще всего для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Асинхронная электрическая машина(АЭМ.)-это электрическая машина переменного тока, у которой частота вращения ротора не равна частоте вращения магнитного поля статора . АЭМ в основном служат двигателями, но благодаря обратимости может работать и генератором с выработкой электроэнергии. В этом случае ее вал вращают иным приводным двигателем . А. э. м. может также работать в режиме тормоза, если её ротор вращать против направления вращения магнитного поля; это свойство А. э. м. используется, например, в системах электрической тяги на переменном токе.



Принцип работы АЭМ основан на взаимодействии вращающегося магнитного поля (см. Вращающееся магнитное поле),возникающего при прохождении трёхфазного переменного тока по обмоткам статора, с током, индуктированным полем статора в обмотках ротора, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля при условии, что частота вращения ротора

n меньше частоты вращения поля n1 .Ротор АЭМ совершает асинхронное вращение со скольжением по отношению к вращающемуся магнитному полю.

О СУЩНОСТИ И ФИЗИКЕ ЭНЕРГОПРЕОБРАЗОВАНИЯ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКИХ МАШИНАХ ПЕРЕМЕННОГО ТОКА

Несмотря на широчайшее распространение трансформаторов и асинхронных электрических машин переменного тока, (АЭМ) до сих пор еще физика и энергетика их работы таят много неразгаданных тайн В чем истинный смысл физики преобразования энергии и работы трансформатора и асинхронной электрической машины? Как электрические машины преобразует подводимую к статорным обмоткам электроэнергию в механическую энергию вращения ротора — в режиме двигателя и -напротив –как она преобразует механическую энергию принудительного вращения ее вала в электроэнергию в режиме генератора? Почему трансформатор не вращается ? Сколько по минимум нужно им потребляемой электроэнергии для совершения прежней полезной работы и на что она расходуется? Куда и как она поступает и во что преобразуется эта входная электроэнергия и где она запасается ? Действительно ли нужен в установившемся режиме асинхронной электрической машине работы внешний источник энергии? И если да- то какова должна быть его минимальная мощность и потребляемая энергия от внешнего источника -из сети? Можно ли сделать на статорных обмотках малозатратным “вечный”индуктивно- транзисторный автогенератор электрических колебаний? И если да -то снизит ли он потребляемую от внешнего источника электроэнергию ? Можно ли синхронизировать частоту электрических колебаний такого электромеханического автогенератора с частотой вращения ротора АЭМ ? Что будет с энергетикой и электромеханикой АЭМ, если вращающееся электромагнитное поле создавать в ее статорных обмотках маломощным задающим многофазным электронным устройством и им же возбуждать электромагнитные колебания в рабочих статорных обмотках по принципу магнитного усилителя? Можно ли сделать необычный трансформатор вообще без электропитания с кпд, равным 1? Можно ли совместить в одной электрической машине переменного тока(АЭМ) и мотор и генератор одновременно ? И если можно- то как ? Можно ли вообще сделать самовращающийся электрический мотор- генератор? Как использовать эдс самоиндукции с пользой в индуктивных нагрузках – для экономии электроэнергии ? На этот далеко не полный перечень “простых” вопросов пока точного физического ответа еще нет .И в силу этого все трансформаторы и все АЭМ , применяемые повсеместно –от вентиляторов до тяговых электроприводов на железной дороге — до сих пор в работе весьма энергозатратны. Правда, резонансные опыты Мельниченко с его экономичными резонансными режимами таких асинхронных электрических машин несколько приоткрыли завесу тайны – и указали направление исследования малозатратных АЭМ , но по- существу, не позволяют АЭМ работать в широком диапазоне скоростей и нагрузок на валу . И, по- существу пока многое в энергетике АЭМ остается неясным и заданные вопросы ждут своего разрешения И это время ясных ответов на них- настало!

Варианты реализации экономичной и как частный случай самовращающейся резонансной асинхронной электрической машины

Постановка задачи:

  1. Включить асинхронный двигатель в режим “частичной рекуперации” –для этого схемно совместить мотор- генератор в одном устройстве –и тем самым вернуть часть затраченной энергии в сеть – т.е. получить двигатель-генератор из стандартного электродвигателя с короткозамкнутым (кз) ротором;
  2. Включить электродвигатель в режим “самовращения” – энергия на выходе асинхронного эл.генератора должна превышать энергию, потребляемую двигателем на компенсацию потерь;
  3. В режиме “самовращения” снять с генератора заданную по мощности полезную электрическую нагрузку.

Предлагаемая электрическая схема АЭМ с регуляторами направлена на решение только первой задачи и ни в коем разе не претендует на полное совершенство. Просто это одно из схемных решений на пути реализации технической идеи, с надеждой на удачу, при внесении корректив на неучтенные факторы и различных поправок. Но сама по себе идея по — видимому жизнеспособная и ранее была высказана и обсуждена на одном из форумов Интернета.

В данной электрической схеме АЭМ для простоты не показаны ротор и некоторые элементы коммутации обмоток .Прежде всего, необходимо для реализации совмещенного мотор- генераторного режима обычной асинхронной эл машины (АЭМ) необходимо выполнить два важных условия:

  • фаза генератора должна совпадать с фазой сети на двигателе;
  • напряжение генератора должно превышать напряжение сети, пусть на каком то отрезке времени периода.

 

Рис 1

 

На Рис 1 показана классическая схема включения “звездой” 3х-фазного двигателя с кз ротором в 3х-фазную сеть с общей электрической нейтралью (нулем).

Начала обмоток подключены к фазам А, В и С.

Концы обмоток соединены межу собой и подключены к нейтрали.

Вращение кз ротора (создание вращающегося электромагнитного поля) обеспечивается относительным сдвигом во времени фаз А, В и С на 120 градусов (за период сети равный 360 градусов) и заданной геометрией расположения обмоток L1, L2 и L3 (через 120 градусов) на кольце статора.

 

Круговая векторная диаграмма фаз напряжений на обмотках двигателя показана на Рис 2.

 

Рис 2

 

Временная диаграмма напряжений на началах обмоток двигателя за один период показана на Рис 3.

 

Рис 3

Оба условия пытаюсь выполнить путем переключения обмоток L1, L2 и L3 относительно фаз сети А, В, С и нейтрали N после раскрутки двигателя до номинальных оборотов в штатном (или любом удобном) режиме.

Одновременно и как можно быстро:

  • начала обмотки L1, L2 и отключаются от сети;
  • конец обмотки L3 отключается от общей точки;
  • фаза С подключается к концу обмотки L3;
  • нейтраль N подключается к началу L3.

Схема после переключения показана на Рис 4.

 

Рис 4

 

Важные условия работы АЭМ в совмещенном мотор- генераторном режиме:

    • Обмотки L1 и L2 стали генераторными – поле вращающегося ротора наводит в них ЭДС превышающую напряжение сети;
    • Вектор Г (фаза генератора), равный векторной сумме векторов Г1(на L1) и Г2 (на L2), равен по величине (в идеале) длине вектора С умноженной на корень из трех (1,73).
    • В обмотке L3 переключена “полярность” на противоположную. Вектор фазы в L3 изменил направление на 180 градусов и стал однонаправленным с вектором Г.

Результат – фаза напряжения Г снимаемого с генераторных обмоток L1+ L2 совпадает с фазой напряжения сети С на двигательной обмотке L3.

Если после переключения двигатель загудит и резко остановится (режим торможения — фаза напряжения сети на двигательной обмотке L3 не совпала с фазой вращения ротора) необходимо изменить направление вращения ротора при раскрутке (поменять местами фазы А и В на обмотках двигателя).

 

Круговая векторная диаграмма напряжений на обмотках двигателя-генератора показана на Рис 5.

 

 

Рис 5

 

Временная диаграмма напряжений на обмотках двигателя-генератора и напряжения генератора показана на Рис 6.

Непременное условие – ротор двигателя должен иметь большой момент инерции (большую маховую массу), так как импульс вращения он получает (грубо) только треть периода, а расходует энергию — на генератор две трети периода и на потери полный период.

Рис 6.

 

Поэтому электродвигатель должен иметь не нагрузку, а именно относительно большой момент инерции на валу. Отсюда вывод — для экспериментов годятся асинхронные двигатели любой мощности. Проще всего повесить на вал двигателя маховик, учитывая его ограничения по массе. Ограничение сверху – ток в обмотках двигателя при пуске (раскрутке) не должен превышать предельно допустимых значений значительное время. Это одна из причин возможного перегрева обмоток и выгорания изоляции. В зависимости от типа, двигатели при пуске допускают до семикратной и более перегрузки по току. Пуск и раскрутку двигателя желательно производить в облегченном режиме, возможно, применять плавный или ступенчатый пуск или с помощью другого двигателя с последующим его механическим и электрическим отключением.

Ограничение снизу — момент инерции ротора двигателя должен гарантированно обеспечить устойчивый (без вибрации) режим работы двигателя при питании от однофазной сети только одной обмотки (L3).

При выполнении этих условий после раскрутки и переключения 3х-фазный двигатель с кз ротором устойчиво работает от однофазной сети 220В подключенной к одной обмотке. С двух генераторных обмоток снимается электрическая мощность.

Эти факты, проверенны практикой!

Теперь двигатель можно загонять в последовательный резонанс, обманывать счетчик и т.д., кому что нравится…

На рис 7 показана схема, которая, в принципе, может быть реализована на комплектации элементной базы 80х годов.

 

 

Рис.7

 

 

Номиналы силовых элементов зависят от мощности и типа применяемого двигателя и поэтому не указаны.

Схема содержит:

    • Резонансный колебательный контур – L1, L2, C1, RС;
    • Д9, Д10 – тиристоры, подключающие нагрузку L3 (при подключенной сети) к колебательному контуру два раза за период в заданные моменты времени относительно начала периода;
    • Времязадающие цепочки — Д1, R1, R2, Д4, С3 для положительной и Д2, R1, R2, Д3, С2 для отрицательной плуволн генератора – элементарные управляемые интегрирующие цепочки;
    • Д6, Д7 – динисторы, пороговые ключевые элементы с напряжением пробоя от 6 до 15В типа КН102 с буквой определяющей высоту порога.
    • R3, R4 – резисторы, ограничивающие ток через управляющие электроды тиристоров;
    • Д5, Д8 – диоды, позволяющие обойти запертые тиристоры при обратной полуволне.

Время заряда С2, С3 до напряжения пробоя Д6, Д7 определяет угол открытия тиристоров – величину мощности возвращаемую с генератора в сеть и в двигатель.

Для симметричной работы схемы необходимо стремиться выполнить два условия: емкости С2 и С3 равны по величине и пороги пробоя динисторов Д6 и Д7 должны быть на одном уровне напряжения. Из практики – пара Д6, Д7 всегда требует подбора.

Исходное положение перед переключением:

  • Движок переменного резистора RС должен находиться в крайнем верхнем положении – максимальное сопротивление в цепи перезаряда емкости С1. Иначе, во время накопления энергии в колебательном контуре L1, L2, C1 двигателю не хватает энергии, и он останавливается – факт, проверенный практикой.
  • Движок резистора R2 в крайнем правом положении — максимальное сопротивление в цепи заряда емкостей С2, С3. Установлен максимальный угол открытия тиристоров Д9, Д10, чтобы минимизировать нагрузку на колебательный контур L1, L2, C1 во время переходных процессов после переключения.

Итак, схема включена, ротор двигателя устойчиво вращается на номинальных оборотах.

При идеальных параметрах элементов и без учета скольжения:

  • на зажимах L3 (двигателя) напряжение сети 220В, из сети потребляется ток Iхх;
  • сопротивление резистора RС равно бесконечности – емкость С1 не перезаряжается, на зажимах генератора Г1-Г2 напряжение порядка 380В;
  • сопротивление резистора R2 равно бесконечности – связь генератора с нагрузкой L3 отсутствует.

Вводим контур L1, L2, C1 в резонансный режим медленным перемещением ползунка реостата вниз по схеме движка резистора RС. Энергия, запасаемая в контуре, потребляется из сети, ток в двигателе (L3) кратковременно растет, затем возвращается к прежнему уровню.

Наступает второй критический момент – с одной стороны необходимо генератор загнать в резонанс, для чего следует поднимать напряжение, с другой – ограничение по электрической прочности изоляции обмоток генератора.

В это время необходимо следить за напряжением на зажимах генератора Г1-Г2 и не допускать его до напряжения пробоя изоляции в L1, L2.

Пробой изоляции обмоток в резонансном режиме – вторая причина вывода двигателей из строя. Здесь надо копать и искать решение, удовлетворяющее обоим условиям. Один из перспективных, на мой взгляд, путей – повышение рабочее частоты.

При рабочей частоте 50 герц величина емкости С1 должна быть подобрана такой, чтобы при закороченном резисторе RС напряжение на зажимах генератора Г1-Г2 не поднималось выше определенного порога.

Возможно, напряжение на емкости С1 и измерял дядя Вася перед подключением нагрузки. Видимо, с учетом различных гармоник, не стоит поднимать напряжение на генераторе выше 1000В. Емкости на такое напряжение тоже не везде валяются, хотя емкости для увеличения напряжения соединяют последовательно.

Скорее всего, при различных ограничениях, колебательный контур войдет в “околорезонансный” режим. Какую то энергию контур запас, да и напряжение на нем в несколько раз превышает напряжение на двигателе (в сети).

Теперь, самое интересное – начинаем загонять энергию, запасенную в колебательном L-C контуре, обратно в двигатель и в питающую сеть.

Рассматриваем положительный полупериод, при этом помним, что генератор и двигатель сфазированы.. Медленно двигаем влево движок резистора R2, уменьшая сопротивление цепочки Г1-Д1-R1-R2-Д4-С3-Г2.

Если емкость С3 успевает зарядиться до конца полупериода до напряжения пробоя динистора Д7, она разрядится по цепочке R4–Д7- управляющий электрод тиристора Д10. Тиристор Д10 откроется и произойдет импульсный сброс энергии контура в сеть (и в двигатель) по силовой цепи Г1-Д5-сеть II (L3)-Д10-Г2.

Напряжение импульса сброса в первый момент будет равно разнице амплитуд на контуре (на С1) и на L3. Напряжение в сети должно несколько повыситься.

Ток импульса определится параметрами силовой цепи, величиной заряда С1 и мощностью генератора.

Длительность импульса – до конца полупериода и обратно пропорциональна времени заряда С3 от начала полупериода до напряжения пробоя динистора Д7.

Обратной (отрицательной) полуволной тиристор Д10 закроется и процесс симметрично повторится на времязадающей R1-R2-С2, динисторе Д6 и тиристоре Д9.

Процесс пошел… При этом RС должен быть полностью закорочен .

Внимательно следим за работой асинхронного электрического мотор-генератора и медленно перемещаем движок потенциометра R2 влево по схеме до попытки срыва устойчивого режима работы. Возвращаем движок потенциометра R2 в зону устойчивой работы, засекаем время

Если нагрузка электрической машины является параметром колебательного контура, тогда контур в этой электрической асинхронной машине нужен параметрический. Причем , согласно принципу — в контуре -параметр синхронизации меняется два раза за период

Интересны и изобретения А. Мельниченко по экономичным резонансным моторам переменного тока (см.приложение)

Привожу в качестве примера реферат одного из них ниже

Резонансный асинхронный двигатель, отличающийся тем, что с целью устранения индуктивного сопротивления в обмотках статора и увеличения мощности асинхронного двигателя, электрическая цепь обмотки статора работает в режиме резонанса напряжений, и содержит последовательно соединенные конденсаторы, обмотку статора и дополнительную индуктивность — для увеличения добротности и компенсации изменения индуктивности обмоток статора при работе асинхронного двигателя с нагрузкой

 

ВТОРОЙ МЕТОД И ВАРИАНТ УСТРОЙСТВА ДЛЯ ПОЛУЧЕНИЯ МИНИМАЛЬНОГО ЭЛЕКТРОПОТРЕБЛЕНИЯ И ДОСТИЖЕНИЯ РЕЖИМА САМОВРАЩЕНИЯ АСИНХРОННОЙ ЭЛЕКТРИЧЕСКОЙ МАШИНЫ

Как известно, в индуктивных обмотках асинхронной электрической машины запасается и затем расходуется электромагнитная энергия на создание вращающегося электромагнитного поля в рабочем зазоре машины. Причем реактивные токи статорных обмоток АЭМ обмениваются за период с питающей сетью переменного тока дважды за период и в сумме равны нулю. Это обстоятельство может быть с пользой реализовано для минимизации электропотребления АЭМ при наличии специальных коммутаторов

 

Для реализации этого режима АЭМ должна быть дополнена быстродействующим коммутатором для обеспечения быстродействующего разрыва тока индуктивных обмоток статора в нужные моменты времени –дважды за период.

Рассмотрим вначале эти процессы коммутации тока в индуктивностях на примере одной обмотки.

Рис.5

В результате запасённая в индуктивности первого контура4 нагрузки 3энергия трансформируется во вторичный контур 6, присоединённый электрически к полезной нагрузке 7. Эта запасённая энергия расходуется, например, в однофазной индукционной печи для дополнительного нагрева металла, или создаёт в случае трёхфазной индуктивной нагрузки в виде, например, трёхфазного асинхронного электродвигателя дополнительную полезную мощность в роторе асинхронного двигателя, т.е. полезно используется, а не тратится на тепловые потери, как ранее. После окончания знакопеременного интервала датчик 10 вновь даёт команду на включение силового полностью управляемого вентиля5, и процесс повторяется. Регулирование напряжения и активной мощности нагрузки 3 осуществляется регулятором скважности 17 в интервале знакопостоянства входного тока и напряжения. Таким образом, функции регулирования и стабилизации выходного напряжения и потребляемой мощности у регулятора напряжения 2 сохраняются. Стабилитроны 20 снимают кратковременные перенапряжения в силовых вентилях 5 при их коммутации. Благодаря устранению контура обмена реактивной мощности между индуктивной нагрузкой 3 и сетью 1 достигается эффект автоматической стабилизации входного коэффициента мощности на уровне, близком к единице, при изменении характера и величины нагрузки в широких пределах, что приводит к значительной экономии электроэнергии. В.индуктивных нагрузках с низким косинусом фи ( асинхронные электродвигатели, индукционные печи, применение данного устройства может обеспечить экономию электроэнергии до 30-50%. Изобретение может быть широко и с пользой применено в любых электрических цепях где есть реактивные элементы начиная от персонального компьютера и пылесоса, сварочного трансформатора, силового трансформатора возле вашего дома, и до линий электропередач в городах и странах, вплоть до Единой мировой энергосистемы.

ПРИМЕР ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Особенности применения положительной обратной связи в трансформаторах и АВМ с коммутацией тока в индуктивностях и рекуперацией электромагнитной энергии индуктивностей в нагрузку в “ реактивные “ интервалы тока

Всякая положительная обратная связь неустойчива и либо ведет к затуханию процесса, либо к его неограниченному возрастанию Первый случай связан с тем, что возвращаемое количество энергии недостаточно для поддержания процесса, он меньше, чем затрачено. Второй случай связан с избытком возвращаемой энергии и, если все элементы в цепи линейны, то система всегда идет в разнос, пока не находится слабое звено, которое выходит из строя. Тогда процесс прекращается. Известно, что бывали случаи взрыва трансформаторов Тесла, которые, правда, не вызывали больших разрушений, но сам факт этот достаточно неприятен. Поэтому такую возможность нужно предотвращать. Одним из способов предотвращения неуправляемости процесса является применение стабилизирующих элементов в любой точке схемы, например, шунтирование конденсатора питания стабилизирующим элементом, предотвращающим безудержный рост напряжения на нем. Величина порога стабилизации должна быть на несколько процентов больше рабочего напряжения, достаточного для запуска схемы. Могут применяться и иные способы.

ВЫВОДЫ

1. Практически все существующие электроприемники переменного тока обладают индуктивностями и бесполезно расходуют излишнюю электроэнергию из сети на ее электромагнитную перезарядку в реактивные интервалы времени , а потом снова отдают эту запасенную энергию в сеть путем обмена индуктивными токами с питающей сетью переменного тока дважды за период.

2. Экономию электроэнергии в них можно обеспечить путем устранения этих реактивных интервалов возврата реактивного тока в сеть и бесполезного расходования запасаемой электромагнитной энергии индуктивностей –путем разрыва цепи в реактивные интервалы времени и использовать эту запасенную энергию с пользой внутри самой этой нагрузки

4. В трехфазных индуктивных нагрузках со вторичным контуром можно обеспечить экономию электроэнергии посредством принудительной циркуляцию реактивных токов по фазам путем прерывания электронными ключами фазных токов в реактивные интервалы времени (при несовпадения по знакам фазных токов и напряжений индуктивностей).

3.Максимальный режим экономии электроэнергии в индуктивных нагрузках достигается быстродействующим разрывом тока индуктивности в момент его максимума – дважды за период переменного тока Рекуперацию электроэнергии обеспечивают благодаря полезному использованию противоэдс самоиндукции при разрыве фазных индуктивных обмоток с током .

4 Физическая сущность этого “разрывного”метода радикальной экономии электроэнергии в индуктивных электроприемниках состоит в возникновении и полезном использовании явления электромагнитной самоиндукции для полезного использования электромагнитной энергии индуктивностей в самой нагрузке .

5.Предложен оригинальный многообмоточный трансформатор с коммутатором в первичной обмотке, циркуляцией реактивных токов и цепью рекуперации электроэнергии между первичной и вторичной обмотками в “ реактивные” интервалы времени. Экономия электроэнергии составляет 80-100%

6. Предложены метод циркуляции реактивных токов в многофазной АЭМ в “реактивные” интервалы и метод рекуперации электроэнергии посредством оригинальной автогенераторной схемы многообмоточной асинхронной вентильной машины. Экономия электроэнергии -80-100%

7.Предложена оригинальная многообмоточная асинхронная вентильная машина с коммутатором в первичной обмотке, циркуляцией реактивных токов и цепью рекуперации электроэнергии между первичной и вторичной обмотками в “ реактивные” интервалы времени. Экономия электроэнергии составляет 80-100%

ЗАКЛЮЧЕНИЕ

Проблема экономии электроэнергии становится все более актуальной в мире и поэтому предлагаемые в статье методы ее экономии имеют важное практическое и научное значение Существующие многочисленные электропотребители переменного тока, содержащие индуктивности,(трансформаторы, асинхронные электрические машины) пока неэкономично расходуют потребляемую электроэнергию, поскольку бесполезно обмениваются реактивными токами и реактивной энергией индуктивностей с питающей электросетью. Этот бесполезный реактивный энергообмен сети и индуктивных электроприемников реактивными токами дважды за период, для экономии электроэнергии, вполне можно устранить разными методами.. В том числе методом конденсаторной компенсации реактивной мощности , резонансными методами настройки электроприемников на единичный входной коэффициент мощности и метод с использованием компенсирующий конденсаторов и электронным(ими) ключом(амии), включенными последовательно в цепи электропитания последовательно с индуктивной (ых) обмотки(ок).

В результате отключения индуктивной нагрузки от сети переменного тока в данные “реактивные” интервалы времени бесполезный переток реактивных токов устраняется. Запасенная ранее реактивная энергия индуктивности длительное время сохраняется внутри многофазных электроприемников благодаря явлению круговой циркуляции ее по фазам индуктивной нагрузки, что и приводит к существенной экономии электроэнергии .

Данный метод циклического отключения индуктивной нагрузки от сети в “реактивные” интервалы позволит получить экономию электроэнергии до 20-30%.

Радикальная экономия электроэнергии индуктивными электропотребителями (до 100%) может быть достигнута при быстродействующей коммутации тока потребления дважды за период в моменты его максимума.

Эффективность этого ”разрывного” метода экономии электроэнергии заключается в полезном использовании возникающей при разрыве тока в индуктивности явления электромагнитной самоиндукции Для его реализации индуктивные электрические нагрузки (потребители)должны иметь замкнутые вторичные электрические и электромагнитные контура . В асинхронных электрических машинах вторичным электрическим и электромагнитным контурами служит ее статорный магнитопровод и ротор, в трансформаторах –их магнитопроводы и вторичные обмотки .

 

Радикальная экономия электроэнергии переменного тока

©Дудышев В.Д.

Самарский технический университет

Контакт савтором:[email protected]

http://www.dudishev2.narod.ru/

В статье сформулирована проблема и намечены пути радикального снижения электропотребления основных электроприемников переменного тока – трансформаторов и асинхронных электрических машин(АЭМ). Рассматриваются методы и устройства их энергетического совершенствования на основе принципа циркуляции реактивной мощности и др.

Предложены и обсуждаются оригинальные управляемые трансформаторы с единичным входным коэффициентом мощности(косинус фи). Предложены и анализируются электрические схемы АЭМ с единичным входным коэффициентом мощности.

Предложено конструктивное совмещение обмоток асинхронных электрических машин, обеспечивающих одновременно двигательно-генераторный режим АЭМ. Рассмотрены и иные варианты экономичных АЭМ в частности по схемам резонансных конденсаторных АЭМ с регуляторами и вентильных асинхронных электрических машин, позволяющих работать электрической машине с минимальным электропотреблением из сети, одновременно в режиме двигателя и генератора, и в режиме “вечного двигателя“(ВД). Предложена самовращающаяся асинхронная вентильная электромашина, работающая одновременно в режиме мотора и генератора, с самовозбуждением и самообеспечением электроэнергией и механической энергией.

Такой необычный совмещенный режим работы АЭМ в режиме “ВД” достигается посредством конструктивного совмещения электродвигателя и электрогенератора в одном электромеханическом устройстве на основе совмещения многофазных статорных обмоток с разным числом пар полюсов. Рассмотрен вариант экономичной резонансной многообмоточной асинхронной электрической машины с введением резонансных конденсаторов между статорными обмотками. Определены условия, при которых одна из ее обмоток работает в генераторном режиме Рассмотрены и прочие оригинальные варианты экономичных трансформаторов и электрических машин (АЭМ) на основе асинхронных электрических вентильных машин.. Предложен оригинальный коммутатор в статорных индуктивных обмотках, обеспечивающий самогенерацию электроэнергии Предлагаемые революционные технические новшества позволяют значительно экономить электроэнергию и в пределе обеспечить 100% экономию электроэнергии в режиме автономного самоэлектрообеспечения этих известных устройств посредством кольцевания энергии в обмотках за счет полезного использования явления самоиндукции при разрыве индуктивностей с электрическим током в моменты его максимума . .

___________________________________________________________________________________________________________________________________________

Введение

Электроэнергия повсеместно дорожает, а ее потребление в мире непрерывно увеличивается . Более 80 % электроэнергии потребляется в мире именно на переменном токе. Поэтому актуальной проблемой мировой энергетики является снижение электропотребления и повышение коэффициента полезного действия кпд всех электроприемников переменного тока. Практически все эти электроприемники обладают индуктивностями .Трансформаторы и асинхронные электрические машины переменного тока –это самые массовые индуктивные электроприемники. Их применяют повсеместно от бытовой электротехники, компьютеров, городской электросети до тягового ж/д электропривода и электропривода прокатных станов. Все они потребляет излишнюю электроэнергию. Асинхронные электрические машины наиболее распространены в мире благодаря простоте конструкции и хорошим регулировочным свойствам.

Основные определения

Трансформатор переменного тока — статическое электромагнитное устройство, имеющее две или более индуктивно- связанных обмоток, предназначенный чаще всего для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Асинхронная электрическая машина(АЭМ.)-это электрическая машина переменного тока, у которой частота вращения ротора не равна частоте вращения магнитного поля статора . АЭМ в основном служат двигателями, но благодаря обратимости может работать и генератором с выработкой электроэнергии. В этом случае ее вал вращают иным приводным двигателем . А. э. м. может также работать в режиме тормоза, если её ротор вращать против направления вращения магнитного поля; это свойство А. э. м. используется, например, в системах электрической тяги на переменном токе.

Принцип работы АЭМ основан на взаимодействии вращающегося магнитного поля (см. Вращающееся магнитное поле),возникающего при прохождении трёхфазного переменного тока по обмоткам статора, с током, индуктированным полем статора в обмотках ротора, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля при условии, что частота вращения ротора n меньше частоты вращения поля n1 .Ротор АЭМ совершает асинхронное вращение со скольжением по отношению к вращающемуся

Снижение энергопотребления за счет применения трансформаторов ТМГСУ11

Проблема энергосбережения в России, еще недавно имевшая лишь формальный характер, сегодня приобретает чрезвычайную актуальность. Экономное расходование топливно-энергетических ресурсов называют одной из главных предпосылок для экономического роста страны. На государственном уровне поставлена задача к 2020-му году на 20% снизить энергоёмкость российской экономики на единицу продукции. Кроме того, в нынешних условиях именно на компанию, поставляющую электроэнергию конечному потребителю, ложится финансовое бремя потерь в распределительных сетях. Уменьшая эти потери, поставщик электроэнергии может свести свои убытки к минимуму.

С этой точки зрения, выбор такими компаниями энергосберегающего оборудования выглядит не только рациональным, но и дальновидным решением. Кроме того, все чаще энергосберегающее оборудование внедряют компании, заботящиеся о своем имидже: предоставить потребителю высококачественную электроэнергию по минимальным ценам – достойная и, что важно, легко осуществимая цель.

Способов снизить потери электроэнергии на отдельно взятом участке существует несколько, но, несомненно, одним из самых эффективных является использование энергосберегающих силовых распределительных трансформаторов ТМГСУ11 производства Минского злектротехнического завода им. В.И. Козлова.

Известно, что львиная доля потерь электроэнергии в России и других странах СНГ приходится на распределительные четырехпроводные электрические сети с напряжением 0, 38 кВ. Свести эти потери к минимуму и призваны трансформаторы типа ТМГСУ11 со специальным встроенным симметрирующим устройством. Экономия электроэнергии в случае применения трансформатора ТМГСУ11 достигается за счет его принципиально новой конструкции – включения в рассечку нулевого провода обмотки симметрирующего устройства. Симметрирующее устройство (СУ) — это дополнительная обмотка, уложенная поверх обмоток высшего напряжения трансформатора.

Рис.1. Схема подсоединения обмотки СУ к обмоткам НН.

Главной причиной дополнительных потерь в линиях электропередач является несимметричная нагрузка фаз – обычное явление в коммунально-бытовых и прочих сетях. При появлении тока в нулевом проводе тепловые потери резко возрастают: их величина квадратично зависима от силы тока (W = I²*R, где W— потери, I – ток в линии, R – сопротивление проводника). Выравнивая перекос фазных напряжений, СУ уменьшает ток в нулевом проводе и, таким образом, минимизирует потери.

Рис.2. Зависимость потерь короткого замыкания от схем
соединения обмоток и величины тока в нулевом проводе

Проведение независимых испытаний показало, что при силе тока в нулевом проводе 0, 25 Iном, использование трансформатора ТМГСУ (Y/Yн) мощностью 250 кВ·А ежегодно может экономить 6196 кВт·ч по сравнению с сетями, где применяются обычные трансформаторы, и 852 кВт·ч электроэнергии – по сравнению с сетями, где применяются трансформаторы со схемой соединения обмоток «звезда-зигзаг-ноль».

Кроме того, выравнивая систему фазных напряжений, трансформаторы ТМГСУ эффективно решают еще одну исключительно важную задачу — обеспечение потребителей качественной электроэнергией. При наличии в сети нелинейных нагрузок (например, сварочных аппаратов, газоразрядных ламп и т. д.) форма кривой изменения выходного напряжения серьезно искажается. Для потребителя это выражается в скачках напряжения, которые приводят к тому, что КПД различных электроприборов, питающихся от этой сети, снижается, устройства потребляют больший ток, сильнее нагреваются, в итоге могут вовсе выйти из строя и даже стать причиной пожара. На сегодняшний день, в России известно уже несколько десятков случаев, когда граждане, подобным образом пострадавшие от перенапряжения возникающем при перекосе фаз в электросети, в судебном порядке добивались возмещения материального ущерба от компаний, ответственных за распределение электроэнергии. СУ незаменимо в деле повышения качества выходного напряжения — оно резко улучшает форму кривой его изменения, приближая ее к синусоидальной.

К тому же, пониженное сопротивление нулевой последовательности трансформатора ТМГСУ обеспечивает высокую чувствительность защиты от коротких замыканий. Система безошибочно распознает даже короткое замыкание, сопровождающееся небольшим током, и срабатывает мгновенно, локализуя поврежденный сегмент – таким образом, повышается защищенность самого трансформатора и безопасность всей электросети. Как следствие в сетях с трансформаторами ТМГСУ значительно снижается вероятность возникновения пожаров.

Трансформаторы ТМГСУ наиболее эффективны при использовании на небольших участках, малых предприятиях, в сельском хозяйстве — там, где рационально применять устройство мощностью до 250 кВ·А.

КАК ПОЛУЧИТЬ ОТ ОБЫЧНОГО ТРАНСФОМАТОРА ИЗБЫТОЧНУЮ ЭЛЕКТРОЭНЕРГИЮ

ИДЕИ И ТЕХНОЛОГИИ ГЕНИЯ ТЕСЛА В ЖИЗНЬ !!!
Видео работы трансформатора Тесла http://new-energy21.ru/besplatnaya-elektroenergiya/transformator-tesla-na-sluzhbe-energetiki-buduschego.html
…………………..

Это просто невероятно, что все мы, учившиеся в школах и получившие высшее образование, — говорит Игорь Павлович, — вплоть до сего дня не знали, что российскими и зарубежными изобретателями давным-давно придумано большое количество «вечных двигателей»! Из эзотерической литературы известно, что всего в природе существует 797 способов получения космической энергии. Сведения об этих способах сыплются сейчас отовсюду, как из рога изобилия. По информации, почерпнутой мною из Интернета, 24 проекта «вечных двигателей» были оформлены в виде патентов, а после кем-то куплены и исчезли вместе с изобретателями. Имя одного из создателей «вечного двигателя», серба Николы Тесла, получило широкую известность во всем мире. Еще в конце позапрошлого столетия в своих работах по развитию беспроводной связи и передаче энергии на расстояние он использовал плоские спиральные катушки в качестве вторичной обмотки трансформатора. В результате был создан так называемый «резонансный трансформатор», коэффициент полезного действия которого превысил единицу.Однако это изобретение было наглухо засекречено: практичность подобных устройств, способных вырабатывать большее количество энергии, нежели то, которое они потребляют, очевидна для потребителей, но никак не для производителей энергии, распределяющих ее централизованно и под контролем. На первый взгляд, возможность создания такого прибора выглядит не слишком правдоподобно. Но могу привести пример на местном, оренбургском материале.
Эту историю рассказал мне врач Оренбургской железнодорожной больницы, с которым познакомил меня один из сотрудников Главного управления по делам ГОЧС Оренбургской области. В нашей нефтеперерабатывающей отрасли работал года три назад энергетик Николай С. Предприятие испытывало перебои в подаче электроэнергии, и нужно было срочно найти какое-то решение. Познакомившись с публикацией о резонансном трансформаторе Николы Тесла, оренбургский тезка знаменитого изобретателя взял эту информацию на вооружение и модернизировал серийные промышленные трансформаторы. Благодаря этому Николай С. получил КПД в 1000 процентов — то есть добился увеличения энергии «на выходе» в 10 раз! В результате потребность предприятия в электроэнергии упала в десять раз, а соответственно, во столько же снизился размер ее оплаты. Когда энергетики получили первое денежное перечисление, сократившееся до десятой доли прежних выплат, были поражены: почему так мало? Послали своих сотрудников провести на предприятии проверку с пристрастием. Те приехали и воочию убедились, что никто не «химичит», предприятие работает в прежнем режиме, а энергопотребление действительно упало десятикратно. После этого в ситуацию вмешалось энергетическое начальство, администрацию предприятия «прижали», талантливого энергетика-новатора уволили, а чудо-трансформаторы разрезали, утилизировали и заменили старыми аналогами безо всяких технических выкрутасов, потребляющими электричество по полной программе. Поговаривают, что Николай С. после этой странной истории бесследно исчез. Ему звонили домой, но там сказали, что по этому адресу он больше не живет и где его искать — одному Богу известно…
Первое время Игорь Павлович сомневался в правдоподобности этой истории. А как проверишь? Выход был один — попытаться самостоятельно собрать резонансный трансформатор Николы Тесла. Поскольку познания в области электротехники, как честно признается оренбургский самородок, у него были нулевые, для начала он тщательно изучил «начинку» серийных трансформаторов. А спустя полтора месяца по описанию прибора, найденному в книге Андрея Кузьмина «Тайны НЛО», смог смастерить действующую модель резонансного трансформатора Тесла и вывести ее на КПД в 300 процентов.
— Я понял, что переделать обычный трансформатор раз в пять проще, чем изготовить новую модель, — говорит изобретатель. — Для этого нужно снять его верхнюю обмотку и намотать вместо нее латунную, медную или бронзовую ленту с учетом расчетного сечения. Николай С. не сразу добился КПД в 1000 процентов, а только с третьей попытки. Однако теперь, когда точно известна конструкция резонансного трансформатора, собрать его для профессионального электрика не составит большого труда. На любом предприятии, если обстоятельства заставят, за считанные дни можно будет модернизировать все имеющиеся трансформаторы, переведя их в автономный режим работы с десятикратным КПД.
«При распространении технологий свободной энергии, — пишет в своем журнале Александр Фролов, — человек и отдельное промышленное или сельскохозяйственное производство становятся менее зависимы от централизованной системы распределения ресурсов, следовательно, более свободными от влияния центральной власти. Трудно сказать, сохранится ли понятие «власть» в привычном смысле и насколько изменится понятие о «государстве», если альтернативная энергетика сможет прорваться на рынок, устранив монополию топливно-энергетического комплекса. Возможно, именно в современной России появится политическая сила, способная качественно изменить существующее положение».
Семидесятилетний ветеран «Оренбурггеологии» Кулдошин — конечно, не политическая сила и становиться ею не собирается. Цель у него одна-единственная: чтобы секрет гироскопа — преобразователя энергии лучистого космического ветра, почерпнутого Игорем Павловичем из Книги библейского пророка Иезекииля и созданного в прошлом году, а также резонансного трансформатора Николы Тесла — получил широкую известность.
— Люди должны это знать, — убежден изобретатель, — ибо осведомленный вооружен!

Понравилось это:

Нравится Загрузка…

Похожее

Экономия электроэнергии. Интересные опыты. — Радиомастер инфо

При подготовке материалов о последовательном и параллельном колебательном контуре на глаза попалась одна интересная схема. Начал рассматривать ее в программах моделирования электронных схем, сначала в самой простой «Начала электроники», затем в более сложной и продвинутой «Multisim». Эти опыты показались мне интересными, решил поделиться с вами, может кого-то вдохновит на новые идеи.

Итак, приступим к рассмотрению схемы. Она простейшая.

Имеется источник переменного напряжения, частотой 50 Гц и амплитудой от 20 В до 70 В. Три лампы, напряжением от 1 В до 5 В. Конденсатор на 10 мкФ и индуктивности на 1 Гн. В схеме два выключателя S1и S2, которые позволяют включать лампы La2 и La3.

Что интересного в этой схеме?

Если включен выключатель S1 то горит лампа La1 и La2, так как ток течет от верхней клеммы источника напряжения через лампу La1 замкнутый выключатель S1, лампу La2  конденсатор С1 и на землю, которая соединена с нижней клеммой источника напряжения. Все просто и понятно.

Если выключатель S1 разомкнуть, а выключатель S2 замкнуть, то будут соответственно гореть лампы La1 и La3. Тоже все просто и понятно.

А если замкнуть выключатели S1 и S2, то казалось бы, должны гореть все три лампы. Но, на практике получается , что горят La2 и La3 лампы, а La1 не горит.

Схема была промоделирована в двух программах «Начала электроники» и «Multisim», результаты получены похожие.

Интересно объяснить это явление, а то получается, если в общую цепь до лампы La1 включить счетчик электроэнергии, то при горящих лампах La2 и La3 он не будет показывать потребление ? Это же не так?

На видео 1, которое ниже, показана работа схемы в программах «Начала электроники» и «Multisim».

Я думаю, многим интересно, почему так происходит. Для того, чтобы разобраться, необходимо уточнить параметры элементов схемы и измерить напряжение на них в различных режимах работы.

Параметры элементов сведены в таблицу:

Элементы схемыЗначение элементов в программе «Начала электроники»Значение элементов в программе «Multisim»
Действующее значение источника переменного напряжения частотой 50 Гц70,7 В20 В
Рабочее напряжение ламп1 В4 В
Емкость конденсатора10 мкФ10 мкФ
Индуктивность катушки1 Гн1 Гн

Саму схему для удобства привожу еще раз:


Процесс проведения измерений показан на видео 2:

Теперь попытаемся объяснить то, что мы видели при работе схемы.

Для удобства анализа схемы обозначим на ней контрольные точки.

Схема 1v точки

 

Напряжения между контрольными точками для программы «Начала электроники» сведены в таблицу:

Между какими точками измерено напряжение (амплитудное значение)Режим 1. Замкнут выключатель S1Режим 2. Замкнут выключатель S2Режим 3.

Замкнут выключатель S1 и S2

Примечание
U1-4100 В100 В100 ВНапряжение источника питания
U1-21,3 В1,3 В0,04 ВНапряжение на лампе La1
U2-31,3 ВНе измерялось

(S1 разомкнут La2 не светится)

1,3 ВНапряжение на лампе La2
U2-5Не измерялось (S2 разомкнут La3 не светится)1,3 В1,3 ВНапряжение на лампе La3
U2-498,7 В98,7 В99,6 ВНапряжение источника питания минус   напряжение на лампе La1

Анализируя полученные измерения можно сказать следующее:

  1. Напряжение источника питания не изменяется и его амплитудное значение (так как мы измеряли осциллографом) равно 100 В.
  2. Когда замкнут выключатель S1 (Режим 1) ток течет через лампу La1, лампу La2 и конденсатор. Основное напряжение падает на конденсаторе, на лампах La1 и La2 по 1,3 В.
  3. Когда замкнут выключатель S2 (Режим 2) ток течет через лампу La1, лампу La3 и индуктивность. Основное напряжение падает на индуктивности, на лампах La1 и La3 по 1,3 в.
  4. Когда замкнуты выключатели S1 и S2, в работу включаются одновременно конденсатор и индуктивность. Частота источника питания 50 Гц. При величине емкости конденсатора 10 мкФ и индуктивности катушки 1 Гн наступает резонанс.

Fрез=1/(2π√LC)

Если подставить значения емкости в Фарадах (10 мкФ = 10 х 10-6 Ф), а индуктивности в Генри (у нас 1 Гн), то получим частоту равную 50 Гц.

Индуктивность и емкость включены параллельно. В параллельном колебательном контуре при резонансе резко повышается его сопротивление, в десятки, а то и сотни раз. Чем выше добротность контура, тем больше повышается сопротивление.

Нашу схему при резонансе (когда замкнуты выключатели S1 и S2) можно заменить эквивалентной схемой:

15 01 16 Схема c U vГде:

G – источник переменного напряжения частотой 50 Гц, амплитудным значением 100 В

La1 — лампа в общей цепи

Z — комплексное сопротивление параллельного контура, в которое входят две лампы La2 и La3, конденсатор на 10 мкФ, катушка индуктивности 1 Гн

U1- падение напряжения на лампе La1

U2 – падение напряжения на комплексном сопротивлении Z

Общий ток в цепи определяется суммой сопротивлений лампы La1 и комплексного сопротивления Z. При резонансе величина комплексного сопротивления Z увеличена в разы. Общий ток, согласно закона Ома, при этом в разы уменьшается. Этот уменьшенный ток на лампе La1 создает падение напряжения (U1 на схеме) всего 40 мВ, чего недостаточно для ее свечения. Но мощность, передаваемая через La1 даже при таком малом токе и достаточно высоком напряжении источника переменного напряжения, достаточна для свечения двух ламп La2 и La3 находящихся в контуре.

В цифрах это выглядит так:

Мощность каждой лампы 230 мВт, ток через неё 230 мА, рабочее напряжение 1 В. Следовательно ее сопротивление R = 1 В : 0,23 А = 4,34 Ом (Не будем учитывать, что сопротивление холодной нити накала и горячей отличаются, для упрощения расчетов).

При падении напряжения 40 мВ (0,04 В) на La1 при резонансе ток в общей цепи равен: I = 0 ,04 В : 4,34 Ом = 0,0092 А

Так как параметры ламп мы брали для действующего значения, то и при определении мощности отбираемой от источника при резонансе, возьмем действующее значение напряжения 70,7 В (а не амплитудное 100 В).

Без учета сдвига фаз получим:

Мощность Р = 70,7 В х 0,0092 А = 0,65 Вт

Две лампы по 230 мВт это 0,46 Вт. Таким образом мощности передаваемой в контур через, несветящуюся, лампу La1 вполне достаточно для свечения ламп La2 и La3, что мы и наблюдали на видео.

В программе «Multisim» значения элементов схемы отличаются, но суть от этого не меняется, поэтому не будем тратить время на анализ результатов измерений в цифрах.

 

Выводы:

1. Есть ли в схеме экономия?

Лампа La1 в общей цепи в данном случае выступает как индикатор тока от источника питания. Когда нет резонанса, замкнут один из выключателей, для свечения двух ламп общей и одной из двух других, ток от источника равен 0,23 А. Это рабочий ток одной лампы. Именно такой ток течет через общую лампу La1. При действующем напряжении 70,7 В от источника для свечения двух ламп отбирается мощность:

Р = 70,7 х 0,23 = 16,26 Вт.

При резонансе общий ток равен 0,0092 А и для свечения двух ламп отбираемая от источника мощность равна 0,65 Вт, расчет приведен выше.

Но для свечения двух ламп нужно всего 0,46 Вт, остальное теряется на индуктивности и емкости. Да, при резонансе потери в десятки раз меньше, но это не есть реальная экономия. Убрать индуктивность и емкость, напряжение источника понизить до 1 В, три лампы в параллель, вот и вся экономия для конкретного случая.

2. Реально, что наглядно продемонстрировал анализ схемы, так это то, что для снижения потерь при передаче электрической энергии на расстояние нужно повышать напряжение. Это при той же мощности ведет к снижению тока и уменьшению падения напряжения, а, следовательно, и потерь. Вывод давно известный, не новый и широко применяется на практике в ЛЭП.

3. Почему схема вызвала такой интерес? Потому, что часто встречаются схемы множества устройств, которые обещают фантастическую экономию при резонансе на частоте 50 Гц, например, схемы сварочных аппаратов и т.д. Прежде чем тратить время на изготовление устройства, тем более не массового производства, нужно проанализировать его реальную полезность.

Материалы пояснений продублированы на видео 3:

 

Мой опыт изготовления своими руками прибора экономии электроэнергии

В последнее время Я часто стал встречать рекламу в интернете чудо прибора, который достаточно просто включить в розетку и он обеспечит 30-40 процентов экономии электроэнергии. И вот такой купил мой друг на рынке за 35$, но к своему удивлению он не смог заметить за несколько месяцев даже намека на экономию. Я его уговорил разобрать и посмотреть, что внутри. А там только схема питания для светодиодов, установленных в корпусе- в общем полный развод.

Долго пришлось ему рассказывать основы электротехники и про то, какие схемы действительно позволяют достичь экономии. Я даже поделился своим опытом самостоятельного изготовления схем для бытовых нужд  для своего дома. Более подробно про чудо приборы заводского изготовления читайте в конце статьи, а сейчас Я расскажу про основополагающие принципы и свой самостоятельный опыт изготовления устройств для экономии электроэнергии в своей квартире.

Как можно сэкономить электроэнергию.

Любая полная мощность состоит из полезной активной, которая производит работу и реактивной, от которой пользы нет. Она снижает эффективность всей энергосистемы.

Мы с вами по нашим электрическим счетчикам в домах, квартирах, гаражах и т. п. платим только за потребление активной энергии. А заводы и фабрики платят и за реактивную энергию, учет которой ведут специальные счетчики. Именно они ее кстати и производят при помощи оборудования с большой индуктивной составляющей.

Реактивная энергия берется из электросети для создания магнитного поля (в катушке, обмотках электродвигателя и т. п.) или электрического (в конденсаторе).

Говоря простыми словами — это электрическая энергия в электросети, которая у  потребителей не используется, поэтому и Мы с вами за неё не платим.  Реактивную составляющую электроснабжающие организации стараются максимально снизить с помощью конденсаторных установок так, как она снижает эффективность передачи электроэнергии.

Поэтому понятно  возникновение идеи преобразования в домашних условиях реактивной энергии в полезную активную. Это можно сделать с помощью разных схем с использованием конденсаторов, которых на просторах инернета можно найти очень много. Поиском и реализацией этих схем занимался Я и мои коллеги электрики, поэтому хочу поделится своим опытом.

Опыт использования различных схем устройств экономии электроэнергии.

Сразу хочу огорчить, что сэкономить не получилось, но за то вышло хорошее  устройство для подавления помех в домашней электропроводке и эффективная грозозащита. Если не верите проверьте на своем опыте.

Все подобные приборы используют в своей схеме накопители энергии или конденсаторы. Только предупреждаю, что в интернете  есть ошибочные схемы при реализации, которых  возможно возникновение короткого замыкания, вследствие чего может возникнуть возгорание вашего творения. Причем авторы статей утверждают, что им удалось добиться экономии до 50 процентов, всем кто хорошо знает электротехнику просто становится смешно от такого бреда.

Новые электронные счетчики считают принципиально по-другому, поэтому самодельные схемы Вам не помогут, и даже могут повредить электронику устройства. Не так давно мой  друг  решил сделать своими руками и опробовать штуковину для экономии, которая проработала несколько минут пока не сгорела микросхема внутри счетчика.
Остановимся теперь на заводских приборах.

Приборы для экономии электроэнергии заводского изготовления.

Сейчас в средствах массовой информации и в интернете активно рекламируется чудо-прибор, который позволяет экономить до 30% электроэнергии в домашних условиях. У него много разных названий SmartBox, Energy Saver, Экономыч и др. Но суть у них всех одна втыкаешь просто в розетку и значительно меньше платишь по счетам.

С более подробной информацией вы можете ознакомиться на официальном сайте-производителя.

По словам производителя они обладают  функциями по фильтрации помех, защиты от ударов молнии, перекоса  фаз и да же преобразуют реактивную электрическую энергию в активную. Но к сожалению реализовать это все в одном не большом приборе на современном этапе развития технологий не возможно. Да в промышленных масштабах возможно добиться экономии максимум 10-15 процентов с использованием дорогих и объемных устройств.

Все производители аппаратов для экономии электроэнергии в домашних условиях на самом деле жульничают и продают бесполезное барахло.

Использовать устройства для экономии электричества в домашних условиях лишено всякого смысла. Но есть другие эффективные методы, позволяющие сэкономить при чем значительно. Читайте о них в следующей нашей статье.

P.s. Современная электроника и бытовая техника конструктивно выпускается с возможностями по  компенсации реактивной энергии. Например, при производстве компьютерных блоков питания известные производители очень серьезно  подходят к подбору комплектующих, что позволяет  сократить реактивную составляющую и сэкономить от  5 до 10 % электроэнергии.

Экономитель электроэнергии — 6 причин обходить стороной Saving Box и другие энергосберегатели

Экономитель Electricity Saving BoxНаверное нет такого человека, который не сталкивался с навязчивой рекламой в интернете и на телевидении о чудодейственных коробочках, которые после покупки достаточно воткнуть в розетку и моментально счета за свет уменьшатся в несколько раз. Разновидностей их масса. Одни из наиболее распространенных — electricity saving box. Сразу скажу все это развод и обман доверчивых покупателей, не разбирающихся в законах электроэнергии.

Внешний вид экономителя и его подключение

Данное устройство для экономии электроэнергии имеет небольшую стоимость и это подкупает потребителей, которые надеются окупить свои затраты в течение двух-трех месяцев эксплуатации. Вот так они выглядят внешне: Энергосберегатель под разные вилки

Как говорит реклама, устройство не только будет экономить вам электроэнергию до 30-50%, но и защищать от перенапряжений, которые возникают при грозе.реклама экономителя Saving box

На фронтальной стороне размещены разноцветные светодиоды, а с обратной — есть вилка под стандартную розетку. Различия у приборов чаще всего не значительные — разные надписи или другая форма корпуса и цвета.

Технические параметры electricity saving box, указанные изготовителем следующие:Технические параметры Electricity Saving Box

  • напряжение 90V-250V
  • подключаемая нагрузка — до 15квт

Встречаются экземпляры мощностью и 25квт, и даже 40квт.

Естественно, нагрузку следует подключать параллельно прибору, например в двойные розетки или переноску.подключение пылесоса через экономитель в переноске

подключение экономителя в розеткуПричем, чем ближе от электросчетчика, тем больший «эффект экономии» будет наблюдаться.

Стоит конечно задуматься о разрешаемой для подключения мощности. Например при 15квт и напряжении 250В сила тока будет порядка 60А. А это уже сопоставимо с нагрузкой сварочного аппарата. Как вы думаете, электропроводка в вашей квартире и контактные вилки приборов останутся целыми если подключить такую нагрузку на длительное время?

Реальное испытание прибора

Как же наглядно понять, что данное устройство для экономии электроэнергии развод? А очень просто, достаточно включить в розетки несколько мощных токоприемников и сделать определенные замеры на счетчике. На электронном счетчике для вычисления потребления нужно будет считать количество импульсов на светодиоде за определенное время. А на механическом — кол-во оборотов диска.

Эксперимент нужно будет повторить в двух вариантах:
  • без включенного прибора в сеть
  • с включенным прибором

Итак, выключаем полностью всю нагрузку в квартире какая есть (холодильники, телевизоры и т.д.). Подключаем в розетку, нагрузку мощностью примерно 1квт. Чем больше будет нагрузка, тем быстрее будет крутиться диск или моргать диоды на приборе учета.

Начинаем считать обороты за определенное количество времени. Например, счетчик СО-505 за 1 час при подключенной нагрузке в 1квт делает 600 оборотов диска или 10 оборотов в минуту.электросчетчик СО505

Соответственно подождав 2 минуты, вы насчитаете примерно 20 оборотов, в зависимости от погрешности и напряжения на счетчике.

Вам абсолютно не обязательно знать точную мощность подключаемой нагрузки. Достаточно правильно подсчитать обороты диска за определенное время.

После этого, включаете устройство для экономии электроэнергии в розетку и опять замеряете обороты диска. И о чудо, в моем примере (нагрузка в 1квт) их количество опять будет около 20, то есть ровно таким же, как и без прибора. Вы можете включать в розетку что угодно, результат будет одним и тем же.

Вот таблица сравнения фактического потребления активной мощности (именно ее учитывают наши счетчики) измеренная не прибором учета, а измерительным устройством -ваттметр, для экономителя марки EkoEnerji 25квт и 40квт (технология замеров здесь)

Используемая нагрузкаВариант испытательной схемыПотребляемая мощность, ВтРазница, в %
Лампочка 60Втбез экономителя610
с экономителем 25квт610
с экономителем 40квт66,3+8,6
Электрокамин 0,5квтбез экономителя496,50
с экономителем 25квт498+0,3
с экономителем 40квт503,8+1,5
Светильник с люминисцентой лампойбез экономителя17,70
с экономителем 25квт19,4+9,6
с экономителем 40квт21,2+19,8
Перфоратор на холостом ходубез экономителя556,10
с экономителем 25квт541,2-2,7
с экономителем 40квт532,4-4,3
Перфоратор+болгарка+эл.каминбез экономителя1544,70
с экономителем 25квт1537,9-0,4
с экономителем 40квт1514-2

Эффект «экономии» (всего около 4%) появился только при подключении эл.инструмента.

Однако это вовсе не экономия эл.энергии — а понижение его полезной мощности!

Если же учесть дополнительные потери в обмотках, которые при этом неизменно образуются, то общий КПД будет еще ниже. При подключении другой нагрузки, потребляемая мощность только увеличилась!

Что внутри устройства

Для того чтобы окончательно убедиться, что никаких чудес экономии это устройство не производит, разберем его и заглянем во внутрь.внутреннее устройство экономителя Saving Box

Ничего гениального это устройство в себе не содержит. Здесь находятся предохранитель, конденсатор, светодиоды, диоды для выпрямления переменного напряжения. Это его электрическая схема:схема устройства Saving Box

Конденсатор нужен, чтобы сглаживать выпрямленное напряжение. А выпрямленное напряжение необходимо для питания светодиодов. То есть прибор работает сам на себя. Никакой полезной нагрузки через свою схему он не пропускает.

Подумайте, какая экономия может быть от таких «внутренностей»?
Основной эффект в приборе несет на себе конденсатор. Он повышает коэффициент мощности. Подобные штуки стоят в дроссельных лампах освещения.

Именно на этом и играют производители. Они уверяют, что устройство способно компенсировать потери реактивной мощности при подключении таких приборов как холодильники, стиральные машины, пылесосы. В рекламе наглядно производят замер тока измерительными клещами и показания действительно уменьшаются!замер тока при подключении энергосберегателя

Но рекламщики не договаривают один существенный момент :

  • во-первых клещами измеряется полный ток (его активная и реактивная составляющие)
  • во-вторых и самое главное — при включении прибора, за счет конденсатора внутри, повышается коэфф. мощности

Формула расчета потребляемой мощности такова:

P=I*U*cosϕ

P-мощность, I-ток, U-напряжение, cosϕ-коэфф. мощности

Из формулы легко понять, что если у вас уменьшился ток, допустим на 20% и одновременно, (а это именно и происходит «благодаря» прибору) увеличился коэфф. мощности на те же самые 20%, потребляемая мощность как была 2квт, так она и останется 2квт.

В вышеприведенном тексте изложена суть работы относительно укомплектованных приборов сберегателей энергии, (то есть они имеют в наличии хотя бы конденсатор). В последнее время все чаще стали попадаться и такие экземпляры:

Когда энергосберегатель “работает”

Однако надо отдать должное, в редких случаях, подобные экономители действительно способны уменьшить количество эл.энергии учтенной счетчиком. На некоторых сайтах даже можно найти отзывы довольных покупателей об успешной экономии при использовании saving box и других коробочек. Чем же это можно объяснить?

А объясняется это тем, что отдельные устройства экономии электроэнергии способны создать в эл.сети импульсы, способствующие отставанию магнитного потока от тока нагрузки и тем самым вносить погрешность в работу прибора учета. Достигается это не при всякой нагрузке, а только при определенной ее величине.

Но такой “фокус” можно проделать только со счетчиками старого образца, которые массово применялись в Советском Союзе.

электросчетчик старого образца СО-5Современные же приборы учета попросту не подвержены влиянию не только таких “помех”, но и многих других.

6 причин никогда не пользоваться экономителями

Помимо того, что данный девайс бесполезен как таковой, он еще может нести и вполне реальные проблемы:

  1. Прибор сам по себе потребляет хоть и малое, но определенное кол-во ватт (лампочки, то за счет чего-то в нем светятся?)
  2. В схеме устройства стоит варистор и если напряжение в розетке внезапно подскочит, именно эта штука станет источником пожара
  3. В некоторых схемах, конденсатор устанавливается без токоограничивающего сопротивления. В этом случае прибор становится не только бесполезным, но еще и опасным.
  4. Энергосберегатели могут создать недопустимый резонанс в сети, тем самым спровоцировав выход из строя энергосберегающих ламп
  5. Теоретически, если сразу во всех квартирах многоэтажного дома будут включены в розетки подобные приборы, в эл.проводке могут возникнуть колебательные процессы, которые будут выводить из строя электронные бытовые приборы (даже просто включенные в режим ожидания – телефон на зарядке, телевизор в режиме Stand By)
  6. В ночной период времени, когда нагрузка минимальна, энергосберегатели способны дополнительно повысить напряжение во всех розетках квартиры. И если оно у вас и так было не маленьким, не удивляйтесь, что утром перестанет работать холодильник или другая техника.

Итог

Каждый потребитель должен четко знать и запомнить, что счетчик установленный у нас в квартирах, учитывает и считает только активную мощность. Реактивная, никоим образом не влияет на расход электроэнергии в квартире.

Устройство для экономии электроэнергии, включенное параллельно с приборами, благодаря конденсатору в своей схеме, может минимально уменьшить реактивную составляющую мощности, никак не влияя на активную. Большинство простых потребителей, не связанных с электричеством, понятия не имеют о данных процессах. Этим и пользуются нерадивые рекламодатели, впаривая свои якобы экономящие наши деньги, не только бесполезные, но и еще опасные «волшебные» коробочки.

экономия электроэнергииНа чем реально и каким образом можно сэкономить до 1000квт в год, можно узнать из статьи Как сэкономить электроэнергию в квартире и доме.

Статьи по теме

Радикальная экономия электроэнергии переменного тока (стр. 1 из 6)

Дудышев В.Д, Самарский технический университет

В статье сформулирована проблема и намечены пути радикального снижения электропотребления основных электроприемников переменного тока – трансформаторов и асинхронных электрических машин АЭМ). Рассматриваются методы и устройства их энергетического совершенствования на основе принципа циркуляции реактивной мощности и др.

Предложены и обсуждаются оригинальные управляемые трансформаторы с единичным входным коэффициентом мощности(косинус фи). Предложены и анализируются электрические схемы АЭМ с единичным входным коэффициентом мощности.

Предложено конструктивное совмещение обмоток асинхронных электрических машин, обеспечивающих одновременно двигательно-генераторный режим АЭМ. Рассмотрены и иные варианты экономичных АЭМ в частности по схемам резонансных конденсаторных АЭМ с регуляторами и вентильных асинхронных электрических машин, позволяющих работать электрической машине с минимальным электропотреблением из сети, одновременно в режиме двигателя и генератора, и в режиме “вечного двигателя“(ВД). Предложена самовращающаяся асинхронная вентильная электромашина, работающая одновременно в режиме мотора и генератора, с самовозбуждением и самообеспечением электроэнергией и механической энергией.

Такой необычный совмещенный режим работы АЭМ в режиме “ВД” достигается посредством конструктивного совмещения электродвигателя и электрогенератора в одном электромеханическом устройстве на основе совмещения многофазных статорных обмоток с разным числом пар полюсов. Рассмотрен вариант экономичной резонансной многообмоточной асинхронной электрической машины с введением резонансных конденсаторов между статорными обмотками. Определены условия, при которых одна из ее обмоток работает в генераторном режиме Рассмотрены и прочие оригинальные варианты экономичных трансформаторов и электрических машин (АЭМ) на основе асинхронных электрических вентильных машин.. Предложен оригинальный коммутатор в статорных индуктивных обмотках, обеспечивающий самогенерацию электроэнергии Предлагаемые революционные технические новшества позволяют значительно экономить электроэнергию и в пределе обеспечить 100% экономию электроэнергии в режиме автономного самоэлектрообеспечения этих известных устройств посредством кольцевания энергии в обмотках за счет полезного использования явления самоиндукции при разрыве индуктивностей с электрическим током в моменты его максимума . .

Введение

Электроэнергия повсеместно дорожает, а ее потребление в мире непрерывно увеличивается . Более 80 % электроэнергии потребляется в мире именно на переменном токе. Поэтому актуальной проблемой мировой энергетики является снижение электропотребления и повышение коэффициента полезного действия кпд всех электроприемников переменного тока. Практически все эти электроприемники обладают индуктивностями .Трансформаторы и асинхронные электрические машины переменного тока –это самые массовые индуктивные электроприемники. Их применяют повсеместно от бытовой электротехники, компьютеров, городской электросети до тягового ж/д электропривода и электропривода прокатных станов. Все они потребляет излишнюю электроэнергию. Асинхронные электрические машины наиболее распространены в мире благодаря простоте конструкции и хорошим регулировочным свойствам.

Основные определения

Трансформатор переменного тока — статическое электромагнитное устройство, имеющее две или более индуктивно- связанных обмоток, предназначенный чаще всего для преобразования переменного тока одного напряжения в переменный ток другого напряжения. Преобразование энергии в трансформаторе осуществляется переменным магнитным полем. Трансформаторы широко применяются при передаче электрической энергии на большие расстояния, распределении ее между приемниками, а также в различных выпрямительных, усилительных, сигнализационных и других устройствах.

Асинхронная электрическая машина(АЭМ.)-это электрическая машина переменного тока, у которой частота вращения ротора не равна частоте вращения магнитного поля статора . АЭМ в основном служат двигателями, но благодаря обратимости может работать и генератором с выработкой электроэнергии. В этом случае ее вал вращают иным приводным двигателем . А. э. м. может также работать в режиме тормоза, если её ротор вращать против направления вращения магнитного поля; это свойство А. э. м. используется, например, в системах электрической тяги на переменном токе.

Принцип работы АЭМ основан на взаимодействии вращающегося магнитного поля (см. Вращающееся магнитное поле),возникающего при прохождении трёхфазного переменного тока по обмоткам статора, с током, индуктированным полем статора в обмотках ротора, в результате чего возникают механические усилия, заставляющие ротор вращаться в сторону вращения магнитного поля при условии, что частота вращения ротора n меньше частоты вращения поля n1 .Ротор АЭМ совершает асинхронное вращение со скольжением по отношению к вращающемуся магнитному полю.

Явление электромагнитной самоидукции

Явление состоит в том что: всякое изменение внешнего магнитного потока сквозь замкнутый проводящий контур приводит к возникновению в последнем электродвижущей силы и вторичного индукционного тока такого направления, что его магнитное поле противодействует изменению внешнего магнитного потока.

О СУЩНОСТИ И ФИЗИКЕ ЭНЕРГОПРЕОБРАЗОВАНИЯ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКИХ МАШИНАХ ПЕРЕМЕННОГО ТОКА

Несмотря на широчайшее распространение трансформаторов и асинхронных электрических машин переменного тока, (АЭМ) до сих пор еще физика и энергетика их работы таят много неразгаданных тайн В чем истинный смысл физики преобразования энергии и работы трансформатора и асинхронной электрической машины? Как электрические машины преобразует подводимую к статорным обмоткам электроэнергию в механическую энергию вращения ротора — в режиме двигателя и -напротив –как она преобразует механическую энергию принудительного вращения ее вала в электроэнергию в режиме генератора? Почему трансформатор не вращается ? Сколько по минимум нужно им потребляемой электроэнергии для совершения прежней полезной работы и на что она расходуется? Куда и как она поступает и во что преобразуется эта входная электроэнергия и где она запасается ? Действительно ли нужен в установившемся режиме асинхронной электрической машине работы внешний источник энергии? И если да- то какова должна быть его минимальная мощность и потребляемая энергия от внешнего источника -из сети? Можно ли сделать на статорных обмотках малозатратным “вечный”индуктивно- транзисторный автогенератор электрических колебаний? И если да -то снизит ли он потребляемую от внешнего источника электроэнергию ? Можно ли синхронизировать частоту электрических колебаний такого электромеханического автогенератора с частотой вращения ротора АЭМ ? Что будет с энергетикой и электромеханикой АЭМ, если вращающееся электромагнитное поле создавать в ее статорных обмотках маломощным задающим многофазным электронным устройством и им же возбуждать электромагнитные колебания в рабочих статорных обмотках по принципу магнитного усилителя? Можно ли сделать необычный трансформатор вообще без электропитания с кпд, равным 1? Можно ли совместить в одной электрической машине переменного тока(АЭМ) и мотор и генератор одновременно ? И если можно- то как ? Можно ли вообще сделать самовращающийся электрический мотор- генератор? Как использовать эдс самоиндукции с пользой в индуктивных нагрузках – для экономии электроэнергии ? На этот далеко не полный перечень “простых” вопросов пока точного физического ответа еще нет .И в силу этого все трансформаторы и все АЭМ , применяемые повсеместно –от вентиляторов до тяговых электроприводов на железной дороге — до сих пор в работе весьма энергозатратны. Правда, резонансные опыты Мельниченко с его экономичными резонансными режимами таких асинхронных электрических машин несколько приоткрыли завесу тайны – и указали направление исследования малозатратных АЭМ , но по- существу, не позволяют АЭМ работать в широком диапазоне скоростей и нагрузок на валу . И, по- существу пока многое в энергетике АЭМ остается неясным и заданные вопросы ждут своего разрешения И это время ясных ответов на них- настало!

Варианты реализации экономичной и как частный случай самовращающейся резонансной асинхронной электрической машины

Постановка задачи:

Включить асинхронный двигатель в режим “частичной рекуперации” –для этого схемно совместить мотор- генератор в одном устройстве –и тем самым вернуть часть затраченной энергии в сеть – т.е. получить двигатель-генератор из стандартного электродвигателя с короткозамкнутым (кз) ротором;

Включить электродвигатель в режим “самовращения” – энергия на выходе асинхронного эл.генератора должна превышать энергию, потребляемую двигателем на компенсацию потерь;

В режиме “самовращения” снять с генератора заданную по мощности полезную электрическую нагрузку.

Предлагаемая электрическая схема АЭМ с регуляторами направлена на решение только первой задачи и ни в коем разе не претендует на полное совершенство. Просто это одно из схемных решений на пути реализации технической идеи, с надеждой на удачу, при внесении корректив на неучтенные факторы и различных поправок. Но сама по себе идея по — видимому жизнеспособная и ранее была высказана и обсуждена на одном из форумов Интернета.

В данной электрической схеме АЭМ для простоты не показаны ротор и некоторые элементы коммутации обмоток .Прежде всего, необходимо для реализации совмещенного мотор- генераторного режима обычной асинхронной эл машины (АЭМ) необходимо выполнить два важных условия:

фаза генератора должна совпадать с фазой сети на двигателе;

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *