Мощность нагревателя формула: Как рассчитать мощность нагревателя — Дальтэн производство и продажа электронагревательных элементов – эффективность нагревателей и определение, расчёт баланса отопления и формулы, рекомендации

Мощность нагревателя формула: Как рассчитать мощность нагревателя — Дальтэн производство и продажа электронагревательных элементов – эффективность нагревателей и определение, расчёт баланса отопления и формулы, рекомендации
Апр 01 2020
alexxlab

Содержание

Количество теплоты и тепловая мощность. Расчет в Excel.

Опубликовано 13 Окт 2013
Рубрика: Теплотехника | 82 комментария

Человечеству известно немного видов энергии – механическая энергия (кинетическая и потенциальная), внутренняя энергия (тепловая), энергия полей (гравитационная, электромагнитная и ядерная), химическая. Отдельно стоит выделить энергию взрыва,…

…энергию вакуума и еще существующую только в теории – темную энергию. В этой статье, первой в рубрике «Теплотехника», я попытаюсь на простом и доступном языке, используя практический пример, рассказать о важнейшем виде энергии в жизни людей — о тепловой энергии и о рождающей ее во времени тепловой мощности.

Несколько слов для понимания места теплотехники, как раздела науки о получении, передаче и применении тепловой энергии. Современная теплотехника выделилась из общей термодинамики, которая в свою очередь является одним из разделов физики. Термодинамика – это дословно «теплый» плюс «силовой». Таким образом, термодинамика – это наука об «изменении температуры» системы.

Воздействие на систему извне, при котором изменяется ее внутренняя энергия, может являться результатом теплообмена. Тепловая энергия, которая приобретается или теряется системой в результате такого взаимодействия с окружающей средой, называется количеством теплоты и измеряется в системе СИ в Джоулях.

Если вы не инженер-теплотехник, и ежедневно не занимаетесь теплотехническими вопросами, то вам, столкнувшись с ними, иногда без опыта бывает очень трудно быстро в них разобраться. Трудно без наличия опыта представить даже размерность искомых значений количества теплоты и тепловой мощности. Сколько Джоулей энергии необходимо чтобы нагреть 1000 метров кубических воздуха от температуры -37˚С до +18˚С?.. Какая нужна мощность источника тепла, чтобы сделать это за 1 час?.. На эти не самые сложные вопросы способны сегодня ответить «сходу» далеко не все инженеры. Иногда специалисты даже помнят формулы, но применить их на практике могут лишь единицы!

Прочитав до конца эту статью, вы сможете легко решать реальные производственные и бытовые задачи, связанные с нагревом и охлаждением различных материалов.  Понимание физической сути процессов теплопередачи и знание простых основных формул – это главные блоки в фундаменте знаний по теплотехнике!

Количество теплоты при различных физических процессах.

Большинство известных веществ могут при разных температуре и давлении находиться в твердом, жидком, газообразном или плазменном состояниях.

Переход из одного агрегатного состояния в другое происходит при постоянной температуре (при условии, что не меняются давление и другие параметры окружающей среды) и сопровождается поглощением или выделением тепловой энергии. Не смотря на то, что во Вселенной 99% вещества находится в состоянии плазмы, мы в этой статье не будем рассматривать это агрегатное состояние.

Рассмотрим график, представленный на рисунке. На нем изображена зависимость температуры вещества Т от количества теплоты Q, подведенного к некой закрытой системе, содержащей определенную массу какого-то конкретного вещества.

1. Твердое тело, имеющее температуру T1, нагреваем до температуры Tпл, затрачивая на этот процесс количество теплоты равное Q1.

2. Далее начинается процесс плавления, который происходит при постоянной температуре Тпл (температуре плавления). Для расплавления всей массы твердого тела необходимо затратить тепловой энергии в количестве Q2— Q1.

3. Далее жидкость, получившаяся в результате плавления твердого тела, нагреваем до температуры кипения (газообразования) Ткп, затрачивая на это количество теплоты равное

Q3Q2.

4. Теперь при неизменной температуре кипения Ткп жидкость кипит и испаряется, превращаясь в газ. Для перехода всей массы жидкости в газ необходимо затратить тепловую энергию в количестве Q4Q3.

5. На последнем этапе происходит нагрев газа от температуры Ткп до некоторой температуры Т2. При этом затраты количества теплоты составят Q5Q4. (Если нагреем газ до температуры ионизации, то газ превратится в плазму.)

Таким образом, нагревая исходное твердое тело от температуры Т1 до температуры Т2 мы затратили тепловую энергию в количестве

Q5, переводя вещество через три агрегатных состояния.

Двигаясь в обратном направлении, мы отведем от вещества то же количество тепла Q5, пройдя этапы конденсации, кристаллизации и остывания от температуры Т2 до  температуры Т1. Разумеется, мы рассматриваем замкнутую систему без потерь энергии во внешнюю среду.

Заметим, что возможен переход из твердого состояния в газообразное состояние, минуя жидкую фазу. Такой процесс именуется возгонкой, а обратный ему процесс – десублимацией.

Итак, уяснили, что процессы переходов между агрегатными состояниями вещества характеризуются потреблением энергии при неизменной температуре. При нагреве вещества, находящегося в одном неизменном агрегатном состоянии, повышается температура и также расходуется тепловая энергия.

Главные формулы теплопередачи.

Формулы очень просты.

Количество теплоты Q в Дж рассчитывается по формулам:

1. Со стороны потребления тепла, то есть со стороны нагрузки:

1.1. При нагревании (охлаждении):

Q=m*c*(Т2-Т1)

Здесь и далее:

mмасса вещества в кг

с – удельная теплоемкость вещества в Дж/(кг*К)

1.2. При плавлении (замерзании):

Q=m*λ

λ

удельная теплота плавления и кристаллизации вещества в Дж/кг

1.3. При кипении, испарении (конденсации):

Q=m*r

rудельная теплота газообразования и конденсации вещества в Дж/кг

2. Со стороны производства тепла, то есть со стороны источника:

2.1. При сгорании топлива:

Q=m*q

qудельная теплота сгорания топлива в Дж/кг

2.2. При превращении электроэнергии в тепловую энергию (закон Джоуля — Ленца):

Q=t*I*U=t*R*I^2=(t/R)*U^2

tвремя в с

Iдействующее значение тока в А

Uдействующее значение напряжения в В

Rсопротивление нагрузки в Ом

Делаем вывод – количество теплоты прямо пропорционально массе вещества при всех фазовых превращениях и при нагреве дополнительно прямо пропорционально разности температур. Коэффициенты пропорциональности (c, λ, r, q) для каждого вещества имеют свои значения и определены опытным путем (берутся из справочников).

Тепловая мощность N в Вт – это количество теплоты переданное системе за определенное время:

N=Q/t

Чем быстрее мы хотим нагреть тело до определенной температуры, тем большей мощности должен быть источник тепловой энергии – все логично.

Расчет в Excel прикладной задачи.

В жизни бывает часто необходимо сделать быстрый оценочный расчет, чтобы понять – имеет ли смысл продолжать изучение темы, делая проект и развернутые точные трудоемкие расчеты. Сделав за несколько минут расчет даже с точностью ±30%, можно принять важное управленческое решение, которое будет в 100 раз более дешевым и в 1000 раз более оперативным и в итоге в 100000 раз более эффективным, чем выполнение точного расчета в течение недели, а то и месяца, группой дорогостоящих специалистов…

Условия задачи:

В помещение цеха подготовки металлопроката размерами 24м х 15м х 7м завозим со склада на улице металлопрокат в количестве 3т. На металлопрокате есть лед общей массой 20кг. На улице -37˚С. Какое количество теплоты необходимо, чтобы нагреть металл до +18˚С; нагреть лед, растопить его и нагреть воду до +18˚С; нагреть весь объем воздуха в помещении, если предположить, что до этого отопление было полностью отключено? Какую мощность должна иметь система отопления, если все вышесказанное необходимо выполнить за 1час? (Очень жесткие и почти не реальные условия – особенно касающиеся воздуха!)

Расчет выполним в программе MS Excel или в программе OOo Calc.

С цветовым форматированием ячеек и шрифтов ознакомьтесь на странице «О блоге». 

Исходные данные:

1. Названия веществ пишем:

в ячейку D3: Сталь

в ячейку E3: Лед

в ячейку F3: Лед/вода

в ячейку G3: Вода

в ячейку G3: Воздух

2. Названия процессов заносим:

в ячейки D4, E4, G4, G4: нагрев

в ячейку F4: таяние

3. Удельную теплоемкость веществ c в Дж/(кг*К) пишем  для стали, льда, воды и воздуха соответственно

в ячейку D5: 460

в ячейку E5: 2110

в ячейку G5: 4190

в ячейку H5: 1005

4. Удельную теплоту плавления  льда λ в Дж/кг вписываем

в ячейку F6: 330000

5. Массу веществ m в кг вписываем соответственно для стали и льда

в ячейку D7: 3000

в ячейку E7: 20

Так как при превращении льда в воду масса не изменяется, то

в ячейках F7 и G7: =E7=20

Массу воздуха находим произведением объема помещения на удельный вес

в ячейке H7: =24*15*7*1,23=3100

6. Время процессов t в мин пишем только один раз для стали

в ячейку D8: 60

Значения времени для нагрева льда, его плавления и нагрева получившейся воды рассчитываются из условия, что все эти три процесса должны уложиться в сумме за такое же время, какое отведено на нагрев металла. Считываем соответственно

в ячейке E8: =E12/(($E$12+$F$12+$G$12)/D8)=9,7

в ячейке F8: =F12/(($E$12+$F$12+$G$12)/D8)=41,0

в ячейке G8: =G12/(($E$12+$F$12+$G$12)/D8)=9,4

Воздух также должен прогреться за это же самое отведенное время, читаем

в ячейке H8: =D8=60,0

7. Начальную температуру всех веществ T1 в ˚C заносим

в ячейку D9: -37

в ячейку E9: -37

в ячейку F9: 0

в ячейку G9: 0

в ячейку H9: -37

8. Конечную температуру всех веществ T2 в ˚C заносим

в ячейку D10: 18

в ячейку E10: 0

в ячейку F10: 0

в ячейку G10: 18

в ячейку h20: 18

Думаю, вопросов по п.7 и п.8 быть недолжно.

Результаты расчетов:

9. Количество теплоты Q в КДж, необходимое для каждого из процессов рассчитываем

для нагрева стали в ячейке D12: =D7*D5*(D10-D9)/1000=75900

для нагрева льда в ячейке E12: =E7*E5*(E10-E9)/1000= 1561

для плавления льда в ячейке F12: =F7*F6/1000= 6600

для нагрева воды в ячейке G12: =G7*G5*(G10-G9)/1000= 1508

для нагрева воздуха в ячейке h22: =H7*H5*(h20-H9)/1000= 171330

Общее количество необходимой для всех процессов тепловой энергии считываем

в объединенной ячейке D13E13F13G13h23: =СУММ(D12:h22) = 256900

В ячейках D14, E14, F14, G14, h24,  и объединенной ячейке D15E15F15G15h25 количество теплоты приведено в дугой единице измерения – в ГКал (в гигакалориях).

10. Тепловая мощность N в КВт, необходимая для каждого из процессов рассчитывается

для нагрева стали в ячейке D16: =D12/(D8*60)=21,083

для нагрева льда в ячейке E16: =E12/(E8*60)= 2,686

для плавления льда в ячейке F16: =F12/(F8*60)= 2,686

для нагрева воды в ячейке G16: =G12/(G8*60)= 2,686

для нагрева воздуха в ячейке h26: =h22/(H8*60)= 47,592

Суммарная тепловая мощность необходимая для выполнения всех процессов за время t рассчитывается

в объединенной ячейке D17E17F17G17h27: =D13/(D8*60) = 71,361

В ячейках D18, E18, F18, G18, h28,  и объединенной ячейке D19E19F19G19h29 тепловая мощность приведена в дугой единице измерения – в Гкал/час.

На этом расчет в Excel завершен.

Выводы:

Обратите внимание, что для нагрева воздуха необходимо более чем в два раза больше затратить энергии, чем для нагрева такой же массы стали.

При нагреве воды затраты энергии в два раза больше, чем при нагреве льда. Процесс плавления многократно больше потребляет энергии, чем процесс нагрева (при небольшой разности температур).

Нагрев воды в десять раз затрачивает больше тепловой энергии, чем нагрев стали и в четыре раза больше, чем нагрев воздуха.

Для получения информации о выходе новых статей и для скачивания рабочих файлов программ прошу вас подписаться на анонсы в окне, расположенном в конце статьи или в окне вверху страницы.

После ввода адреса своей электронной почты и нажатия на кнопку «Получать анонсы статей» НЕ ЗАБУДЬТЕ  ПОДТВЕРДИТЬ ПОДПИСКУ кликом по ссылке в письме, которое тут же придет к вам на указанную почту (иногда — в папку «Спам»)!

Мы вспомнили понятия «количество теплоты» и «тепловая мощность», рассмотрели фундаментальные формулы теплопередачи, разобрали практический пример. Надеюсь, что мой язык был прост, понятен и интересен.

Жду вопросы и комментарии на статью!

Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.

Ссылка на скачивание файла: raschet-teplovoy-moshchnosti (xls 19,5KB).

Другие статьи автора блога

На главную

Статьи с близкой тематикой

Отзывы

как правильно рассчитать, как выбрать

мощность обогревателя

мощность обогревателяЖелаете, чтобы мощности обогревателя хватало на то, чтобы согреть Вас в самые холодные зимние вечера? Тогда стоит подойти к выбору ответственно. Перед покупкой лучше ознакомиться с рядом параметров приборов различного типа, учесть метраж прогреваемого помещения, а также такие факторы, как отсутствие/наличие теплоизоляции, толщину стен и максимальную разницу между уличной и комнатной температурой в самое холодное время года. В случае ошибки в расчетах вы рискуете приобрести обогреватель с большей мощностью, чем это необходимо (что обернется переплатами за электроэнергию), или, наоборот, устройство с меньшей мощностью, которое не способно эффективно прогреть площадь комнаты.

Виды электрических обогревателей, их отличия друг от друга

Электрические обогреватели бывают разных видов, каждый из которых имеет свои преимущества, недостатки, принцип и скорость действия.

Перечислим некоторые из них:

  1. Тепловой вентилятор – такое устройство чем-то напоминает обычный вентилятор, однако перед его лопастями помещена накаливающаяся спираль, которая обеспечивает обогрев той части комнаты, на которую направлен поток воздуха. Несмотря на то что тепловентилятор достаточно эффективен, он не предназначен для постоянного обогрева помещения. Существенный недостаток такого устройство – краткосрочность результата от его воздействия на окружающую среду.
  2. Обогреватель из керамики по принципу действия очень похож на тепловентилятор, только в качестве нагревателя выступают керамические пластины. Подобные модели работают на газе и от электросети, бывают напольные, настенные и даже настольные. Основным преимуществом керамического обогревателя является сохранение влажности в помещении.
  3. Радиатор масляного типа справляется с нагревом воздуха в очень короткие сроки, однако его не стоит приобретать, если в доме есть животные или маленькие дети, поскольку и те, и те рискуют обжечься. Такой прибор считается не самым экономичным вариантом – он расходует много электроэнергии.
  4. Электрические модели нагревают воздух до нужной температуры достаточно быстро, а сами остывают медленно. В основе принципа работы этих устройств — конвекция. В нижней части прибора расположены детали, всасывающие воздух, нагрев происходит за счет работы ТЭНа – трубчатого электронагревателя, от площади которого напрямую зависит объем разогретого газа. Именно поэтому ТЭН часто производят с ребристой поверхностью. Преимущество конвектора перед масляным обогревателем состоит в том, что температура теплоносителя повышается с большей скоростью, а значит, не придется ждать, пока в комнате потеплеет. Кроме того, эти устройства гораздо компактнее. Особенно популярны настенные модели.
  5. Инфракрасный обогреватель. Работа устройств этого вида основана на электромагнитном излучении – при этом нагреваются сначала предметы, попадающие под воздействие волн, а затем – сам воздух. Конструктивными элементами прибора также выступают ТЭНы. Другой вариант – открытые спирали, иногда защищенные кварцевыми трубками, либо металлические сетки, пластиковые панели с отверстиями или карбоновое покрытие. В комнатах обогреватель защищают прозрачными перегородками или металлическими сетками. Инфракрасные обогреватели бывают разных типов. В зависимости от длины волн их делят на коротковолновые, средне- и длинноволновые, от источника энергии – электрические, газовые, дизельные и водяные, от способа установки – передвижные и стационарные.

Как рассчитать мощность обогревателя?

Все современные приборы оснащены термостатами, которые позволяют поддерживать определенную температуру. Сам тип обогревателя мало влияет на эффективность его работы – тут важно произвести правильный расчет.

Чтобы согреть воздух в квартире, необходимо с помощью конвектора поддержать температуру воздуха с определенной теплоемкостью.


При расчете мощности обогревателя учитывают следующие показатели:
  1. Минимальная уличная температура в зимний период.
  2. Комфортная температура в комнате.
  3. Плотность воздуха – 1,3 кг/м3.
  4. Теплоемкость воздуха — 0,001 МДж.
  5. Теплота 1 МДж – 0,277кВт/ч

Количество тепла, необходимого для разогрева конкретного помещения, можно высчитать по формуле: с= Q/m(t2 — t1), где с — удельная теплоемкость, Q — теплота, m — масса воздуха.

Преобразуем формулу, получится: Q=c*m*(t2-t1), теперь нужно узнать массу воздуха в комнате.

Формула для её вычисления проста: m= ϱ*Р*h, где ϱ — плотность воздуха, Р — площадь помещения, h — высота.

Таким образом, формула расхода тепла приобретает формулу: kWt= 0,277*c*ϱ*Р*h*(t2-t1).

Итак, можно рассчитать примерные энергозатраты на обогрев небольшой комнаты (в 40 кв. м при высоте потолка в 3 м. при минимальной температуре – 10 и необходимой +20).

kWt= 0,277*0,001*1,3*3*40*30= 1,29636 (кВт/ч).

Теплопотери

Существует несколько причин, по которым тепло уходит из помещения:

  • вентиляция;
  • теплопроводность стен, окон, потолка и пр.;
  • излучение.

По нормам СНиП, примерный объем циркуляции свежего воздуха – 20 кв. м. в час.Чтобы согреть вновь поступивший прохладный воздух необходимо дополнительное количество энергии. Расчет производится по той же формуле: kWt= 0,277*0,001*1,3*20*30=0,21606 (кВт/ч).

Формула для расчета теплопотерь выглядит так: Q=λ*(t1-t2)*S/L, где S — площадь стенки, L — толщина стены, λ — коэффициент теплопроводности,  который индивидуален для каждого материала.

Например, для кирпича λ = 0,5 Вт/(м*С), длина стены = 8 м, высота = 3 м, толщина стены = 0,5 м.

S= 4*8*3= 96 кв.м.

Q=0,5*30*96/0,5= 2880 (Вт)=2,88 (кВт).

Таким образом, теплопотери уже превышают необходимые энергозатраты для обогрева помещения без их учета. Но не стоит забывать, что необходимо ещё учесть показатель крышного перекрытия, а там теплопотери могут достигать нескольких десятков.Выходит, что для поддержания нормальной температуры в помещении требуется чуть ли не в пятнадцать раз больше электроэнергии, чем для его «чистого» обогрева.

обогреватель

обогреватель

Учет теплоизоляции

Значительную роль в расчете необходимой мощности играет теплоизоляция. Например, слой минеральной ваты в 2 м значительно снизит теплопотери , λ = 0,06 (для вышеперечисленных параметров):

Q= 0,06*30*40/0,2 = 360 (Вт) = 0, 36 (кВт).

При расчете теплопотерь пола во внимание берут то, что грунт имеет изначальную температуру около 5 градусов тепла.

Если помещение изолировано, то понадобится в среднем от 3 до 5 кВт для компенсации теплопотерь. Расчет собственного примера можно сделать по приведенному примеру, данные о конкретных материалах легко найти в справочниках.

Как выбрать обогреватель?

Произведя необходимые подсчеты, следует выбирать прибор по показателю максимальной мощности с небольшим запасом – умножая полученный в результате расчетов коэффициент на 1,2, тем более что все современные модели имеют терморегулятор.

Мощное устройство быстрее прогреет помещение. Сохранить тепло помогут шторы, которые служат своеобразным теплоизолятором. Для конвекторных обогревателей нужно создать условия по свободной циркуляции воздуха.

Выбрав устройство с помощью расчетов, Вы избежите лишней траты денег.

Калькуляторы расчета нагревателя муфельной печи

Если домашнему мастеру по характеру выполняемых им работ необходима муфельная печь, то он, конечно, может приобрести готовый прибор в магазине или по объявлениям. Однако, стоит подобное оборудование заводского производства – весьма недешево. Поэтому многие умельцы берутся за изготовление таких печей самостоятельно.

Калькуляторы расчета нагревателя муфельной печиКалькуляторы расчета нагревателя муфельной печи

Основной «рабочий узел» электрической муфельной печи – нагреватель, который в условиях кустарного производства обычно исполняют в виде спирали из специальной проволоки с высокими показателями сопротивления и термической отдачи. Характеристики его должны строго соответствовать мощности создаваемого оборудования, предполагаемым температурным режимам работы, а также отвечать еще некоторым требованиям. Если планируется самостоятельное изготовление прибора, то советуем применить предлагаемые ниже алгоритм и удобные калькуляторы расчета нагревателя муфельной печи.

Расчет требует определенных пояснений, которые постараемся изложить максимально доходчиво.

Алгоритм и калькуляторы расчета нагревателя муфельной печи

Из чего делаются нагревательные спирали

Для начала – буквально несколько слов о проволоке, которая используется для навивки нагревательных спиралей. Обычно для таких целей применяется нихромовая или фехралевая.

  • Нихромовая (от сокращений никель + хром) чаще всего представлена сплавами Х20Н80-Н, Х15Н60 или Х15Н60-Н.

Цены на муфельную печь

муфельная печь

Ее достоинства:

— высокий запас прочности при любых температурах нагрева;

— пластична, легко обрабатывается, поддаётся свариванию;

— долговечность, стойкость к коррозии, отсутствие магнитных качеств.

Недостатки:

— высокая стоимость;

— более низкие показатели нагрева и термоустойчивости по сравнению с фехралевой.

  • Фехралевая (от сокращений феррум, хром, алюминий) – в наше время чаще используется материал из сплава Х23Ю5Т.

Достоинства фехраля:

— намного дешевле нихрома, благодаря чему в основном материал и пользуется широкой популярностью;

— имеет более значительные показатели сопротивления и резистивного нагрева;

— высокая жаростойкость.

Недостатки:

— низкая прочность, а после даже однократного нагрева свыше 1000 градусов – выраженная хрупкость спирали;

— невыдающаяся долговечность;

— наличие магнитных качеств, подверженность коррозии из-за наличии в составе железа;

— ненужная химическая активность – способен вступать в реакции с материалом шамотной футеровки печи;

— чрезмерно большое термическое линейное расширение.

Каждый из мастеров волен выбрать любой из перечисленных материалов, проанализировав их «за» и «против». Алгоритм расчёта учитывает особенности такого выбора.

Шаг 1 – определение мощности печи и силы тока, проходящего через нагреватель.

Чтобы не вдаваться в ненужные в данном случае подробности, сразу скажем, что существуют эмпирические нормы соответствия объема рабочей камеры муфельной печи и ее мощности. Они показаны в таблице ниже:

Объем муфельной камеры печи (литры)Рекомендуемая удельная мощность печи (Вт/л)
1÷5300÷500
6÷10120÷300
11÷5080÷120
51÷10060÷80
101÷50050÷60

Если есть проектные наброски будущего прибора, то объем муфельной камеры определить несложно – произведением высоты, ширины и глубины. Затем объем переводится в литры и умножается на указанные в таблице рекомендуемые нормы мощности. Так получаем мощность печи в ваттах.

Табличные значения указаны в некоторых диапазонах, так что или применяйте интерполяцию, или принимайте примерно среднюю величину.

Найденная мощность, при известном напряжении сети (220 вольт) позволяет сразу определить силу тока, который будет проходить через нагревательный элемент.

I = P / U.

I – сила тока.

Р – определённая выше мощность муфельной печи;

U – напряжение питания.

Весь этот первый шаг расчета очень легко и быстро можно проделать с помощью калькулятора: все табличные значения уже внесены в программу вычисления.

Калькулятор мощности муфельной печи и силы тока, проходящего через нагреватель

Перейти к расчётам

Шаг 2 – определение минимального сечения проволоки для навивки спирали

Любой электрический проводник ограничен в своих возможностях. Если через него пропускать ток, выше допустимого, он попросту перегорит или расплавится. Поэтому очередной шаг в расчетах – определение минимально допустимого диаметра проволоки для спирали.

Определить его можно по таблице. Исходные данные – рассчитанная выше сила тока и предполагаемая температура разогрева спирали.

D (мм)S (мм ²)Температура разогрева проволочной спирали, °C
2004006007008009001000
Максимальная допустимая сила тока, А
519.65283105124146173206
412.637608093110129151
37.0722.337.554.5647788102
2.54.9116.627.54046.657.566.573
23.1411.719.628.733.839.54751
1.82.541016.924.92933.13943.2
1.62.018.614.42124.52832.936
1.51.777.913.219.222.425.73033
1.41.547.251217.42023.32730
1.31.336.610.915.617.82124.427
1.21.1369.81415.818.721.624.3
1.10.955.48.712.413.916.519.121.5
10.7854.857.710.812.114.316.819.2
0.90.6364.256.79.3510.4512.314.516.5
0.80.5033.75.78.159.1510.812.314
0.750.4423.45.37.558.49.9511.2512.85
0.70.3853.14.86.957.89.110.311.8
0.650.3422.824.46.37.158.259.310.75
0.60.2832.5245.76.57.58.59.7
0.550.2382.253.555.15.86.757.68.7
0.50.19623.154.55.25.96.757.7
0.450.1591.742.753.94.455.25.856.75
0.40.1261.52.343.33.854.455.7
0.350.0961.271.952.763.33.754.154.75
0.30.0851.051.632.272.73.053.43.85
0.250.0490.841.331.832.152.42.73.1
0.20.03140.651.031.41.651.8222.3
0.150.01770.460.740.991.151.281.41.62
0.10.007850.10.470.630.720.80.91
D — диаметр нихромовой проволоки, мм
S — площадь поперечного сечения нихромовой проволоки, мм²

И сила тока, и температура берутся ближайшие, но обязательно с приведением в большую сторону. Например, при планируемом нагреве 850 градусов следует ориентироваться на 900. И, допустим, при силе тока в этом столбце, равной 17 амперам, берется большее ближайшее – 19,1 А. В двух левых столбцах сразу определяется минимально возможная проволока – ее диаметр и площадь поперечного сечение.

Более толстую проволоку использовать можно (иногда это становится и обязательным – о таких случаях будет рассказано ниже). Но меньше – никак нельзя, так как нагреватель просто перегорит в рекордно короткий срок.

Шаг 3 – определение необходимой длины проволоки для навивки спирального нагревателя

Известны мощность, напряжение, сила тока. Намечен диаметр проволоки. То есть имеется возможность, используя формулы электрического сопротивления, определить длину проводника, который будет создавать необходимый резистивный нагрев.

L = (U / I) × S / ρ

ρ — удельное сопротивление нихромового проводника, Ом×мм²/м;

L — длина проводника, м;

S  — площадь поперечного сечения проводника, мм².

Как видно, потребуется еще одна табличная величина – удельное сопротивление материала на единицу площади поперечного сечения и длины проводника. Необходимые для расчета данные – показаны в таблице:

Марка нихромового сплава, из которого изготовлена проволокаДиаметр проволоки, ммВеличина удельного сопротивления, Ом×мм²/м
Х23Ю5Тнезависимо от диаметра1.39
Х20Н80-Н0,1÷0,5 включительно1.08
0,51÷3,0 включительно1.11
более 31.13
Х15Н60
или
Х15Н60-Н
0,1÷3,0 включительно1.11
более 31.12

Еще проще покажется расчет, если использовать наш калькулятор:

Калькулятор расчета длины проволоки для спирали

Довольно часто нихромовую ил фехралевую проволоку реализуют не на метры, а на вес. Значит, потребуется перевести длину в ее эквивалент по массе. Выполнить такой перевод поможет предлагаемая таблица:

Диаметр проволоки, ммВес погонного метра, гДлина 1 кг, м
Х20Н80Х15Н60ХН70ЮХ20Н80Х15Н60ХН70Ю
0.62.3742.3172.233421.26431.53447.92
0.73.2313.1543.039309.5317.04329.08
0.84.224.123.969236.96242.74251.96
0.95.3415.2145.023187.23191.79199.08
16.5946.4376.202151.65155.35161.25
1.29.4959.2698.93105.31107.88111.98
1.311.14410.87910.48189.7491.9295.41
1.412.92412.61712.15577.3779.2682.27
1.514.83714.48313.95367.469.0571.67
1.616.88116.47915.87659.2460.6862.99
1.821.36520.85620.09346.8147.9549.77
226.37625.74824.80637.9138.8440.31
2.231.91531.15530.01531.3332.133.32
2.541.21340.23138.75924.2624.8625.8
2.851.69750.46648.6219.3419.8220.57
359.34657.93355.81416.8517.2617.92
3.267.52365.91563.50314.8115.1715.75
3.580.77778.85375.96812.3812.6813.16
3.685.45883.42480.37111.711.9912.44
4105.504102.99299.2249.489.7110.08
4.5133.529130.349125.587.497.677.96
5164.85160.925155.0386.076.216.45
5.5199.469194.719187.5955.015.145.33
5.6206.788201.684194.4794.844.955.14
6237.384231.732223.2544.214.324.48
6.3261.716255.485246.1383.823.914.06
6.5278.597271.963262.0133.593.683.82
7323.106315.413303.8743.093.173.29
8422.016411.968396.8962.372.432.52
9534.114521.397502.3221.871.921.99
10659.4643.7620.151.521.551.61

Шаг 4 – Проверка соответствия удельной поверхностной мощности рассчитанного нагревателя допустимому значению

Нагреватель или не справится со своей задачей, или будет работать на грани возможностей и оттого быстро перегорит, если его поверхностная удельная мощность будет выше допустимого значения.

Поверхностная удельная мощность – это количество тепловой энергии, которое необходимо получить с единицы площади поверхности нагревателя.

Прежде всего – определяем допустимое значение этого параметра. Оно выражается следующей зависимостью:

βдоп = βэф × α

βдоп – допустимая удельная поверхностная мощность нагревателя, Вт/см²

βэф – эффективная удельная поверхностная мощность, зависящая от температурного режима работы муфельной печи.

α – коэффициент эффективности теплового излучения нагревателя.

βэф берем из таблицы. Данными для входа в нее являются:

Левый столбец – ожидаемая температура воспринимающей среды. Проще говоря – до какого уровня требуется разогреть помещенные в печь материалы или заготовки. Каждому уровню соответствует своя строка.

Все остальные столбцы – температура разогрева нагревательного элемента.

Пересечение строки и столбца даст искомое значение βэф.

Требуемая температура тепловоспринимающего материала, °СПоверхностная мощность βэф (Вт/cм ²)  при температуре разогрева нагревательного элемента, °С
80085090095010001050110011501200125013001350
1006.17.38.710.312.514.1516.41921.824.928.436.3
2005.97.158.5510.15121416.2518.8521.6524.7528.236.1
3005.656.858.39.911.713.751618.621.3524.527.935.8
4005.26.457.859.4511.2513.315.5518.120.92427.4535.4
5004.55.77.158.810.5512.614.8517.420.223.326.834.6
6003.54.76.17.79.511.513.816.419.322.325.733.7
70023.24.66.258.051012.414.917.720.824.332.2
8001.252.654.26.058.110.412.915.718.822.330.2
8501.434.86.859.111.714.517.62129
9001.553.45.457.7510.31316.219.627.6
9501.83.856.158.6511.514.518.126
10002.054.36.859.712.7516.2524.2
10502.34.87.6510.7514.2522.2
11002.555.358.51219.8
11502.855.959.417.55
12003.156.5514.55
13007.95

Теперь – поправочный коэффициент α. Его значение для спиральных нагревателей показано в следующей таблице.

ИллюстрацияВариант расположения спирального нагревательного элементаЗначение коэффициента α
Калькуляторы расчета нагревателя муфельной печиНагревательная спираль спрятана в ниши футеровки муфельной печи.0,16 ÷ 0,24
Калькуляторы расчета нагревателя муфельной печиНагревательная спираль заключена в кварцевые трубки и расположена на полочках по стенкам камеры0,30 ÷ 0,36

Простое перемножение этих двух параметров как раз и даст допустимую удельную поверхностную мощность нагревателя.

Примечание: Практика показывает, что для муфельных печей с высокотемпературным нагревом (от 700 градусов), оптимальным значением  βдоп будет 1,6 Вт/см² для нихромовых проводников, и примерно 2,0÷2,2  Вт/см² для фехралевых. Если печь работает в режиме нагрева до 400 градусов, то таких жестких рамок нет – можно ориентироваться на показатели от 4 до 6 Вт/см².

Итак, с допустимым значением поверхностной удельной мощности определись. Значит, необходимо найти удельную мощность рассчитанного ранее нагревателя и сравнить с допустимой.

Быстро рассчитать этот параметр поможет калькулятор:

Калькулятор расчета удельной поверхностной мощности нагревателя

Перейти к расчётам

Если полученное значение не превышает допустимого – расчет может считаться законченным.

В том случае, когда найденное значение превосходит допустимый уровень поверхностной удельной мощности, придется проведенные расчеты несколько откорректировать. Сделать это можно, вернувшись к шагам №2—3, и повторив вычисления с увеличением диаметра проволоки на одну или несколько стандартных позиций – одновременно с этим возрастет и ее длина. Затем – снова сверить показатели. И так – пока не будет найден оптимальный вариант и с точки зрения максимальной экономичности, и с позиций обеспечения соответствия указанному параметру.

С набором наших калькуляторов провести повторный расчет – это дело буквально нескольких минут. И вот на этом расчет может считаться законченным. Можно приобретать проволоку выбранного сплава, с рассчитанными диаметром и длиной.

Калькуляторы расчета нагревателя муфельной печиКак собрать муфельную печь своими руками

В этой публикации акцент был сделан именно на расчетах нагревательного элемента. А более подробно именно о процессе самостоятельного изготовления муфельной печи – читайте в специальной статье нашего портала.

Калькулятор расчета необходимой мощности электрообогревателя

Электрический обогрев помещений всегда может прийти на помощь основной системе отопления, заменить ее в осенний или весенний период межсезонья, а в особых случаях – даже стать основным источником тепла в зимнюю пору. Все зависит от того, какой тепловой мощностью обладают приобретаемые электрические нагреватели.

Калькулятор расчета необходимой мощности электрообогревателяКалькулятор расчета необходимой мощности электрообогревателя

Несмотря на широкое разнообразие современных электрических обогревательных приборов – конвекторов, тепловентиляторов, масляных радиаторов, инфракрасных излучателей и т.п., параметр мощности для любого из них является определяющим. Именно он показывает тот эксплуатационный потенциал, который заложен производителем в это изделие. Значит, прежде чем отправляться в магазин за покупкой, необходимо четко представлять, с каким критерием оценки подходить к выбору той или иной модели. Поможет в этом — калькулятор расчета необходимой мощности электрообогревателя.

Ниже будут даны некоторые необходимые разъяснения по порядку проведения расчетов.

Калькулятор расчета необходимой мощности электрообогревателя

Перейти к расчётам

Пояснения по проведению расчетов мощности обогревателя

Программа калькулятора основана на учете особенностей помещения, в котором предполагается использование электрического обогревателя.

Цены на электрообогреватели

Электрообогреватели

  • Прежде всего необходимо определиться, какая миссия будет возлагаться на прибор – станет ли он лишь «подмогой» для отопления, или необходимо предусмотреть вариант, когда обогреватель должен будет справиться с функцией основного источника тепла.
  • Площадь помещения – исходная величина для проведения расчетов.
  • Внешние стены – чем их больше, тем выше общее количество тепловых потерь, требующих определенной компенсации.
  • Стены с северной и восточной сторон практически никогда не получают «солнечного заряда», в отличие от южных и юго-западных.
  • Стены, расположенные с наветренной стороны, охлаждаются значительно быстрее других – это учтено в алгоритме расчета.
  • При указании уровня температур не следует указывать рекордно низкие показатели – это должно быть значение, которое является обычным для региона проживания, в самую холодную декаду зимы. Тем самым калькулятор уже учтет имеющиеся климатические особенности.
  • Степень утепления стен. Если термоизоляционные работы проводились полноценно, на основании проведенных теплотехнических расчетов, то можно отнести стены к разряду качественно утепленных. Кирпичная стена, примерно в 400÷500 мм толщиной, и аналогичная ей, могут претендовать на среднюю степень утепленности. Стены вообще без утепления, по идее, рассматриваться и вовсе не должны, так как в таком помещении даже при непозволительно большом расходе электроэнергии, комфортного микроклимата все равно не добиться. Приобретение электрообогревателя в таких условиях становится бессмысленной затеей.
  • Высота потолков – влияет на общий объем помещения.
  • Следующие два окна ввода – это характер помещений, расположенных сверху и снизу рассматриваемой комнаты. Естественно, от их особенностей зависит количество теплопотерь через верхнее и нижнее перекрытие.
  • Далее – блок полей, касающихся окон в помещении. Необходимо, в первую очередь, указать тип окон – калькулятор учтет их теплосберегающие возможности. Далее, после указания количества и размеров окон, программа вычислит коэффициент остекления (относительно площади помещения) и сделает соответствующую корректировку в расчетах.
  • Наконец, в комнате может быть одна или даже несколько используемых дверей, выходящих на улицу или в неотапливаемые помещения. Естественно, что при каждом открывании такой двери в комнату поступает немалый объем охлаждённого воздуха, который потребует дополнительного расхода тепловой мощности.

Результат дается в ваттах и киловаттах. По этим параметрам уже можно будет оценивать приглянувшуюся в магазине модель электрообогревателя.

2016-08-16_125714Как правильно выбрать электрообогреватель?

Помимо мощности, существует немало иных критериев оценки подобных приборов – габариты, безопасность в работе, удобство пользования, мобильность, степень автоматизации и другие. Подробнее об аспектах выбора энергосберегающих электрических обогревателей – в специальной публикации нашего портала.

Расчет тепловой мощности обогревателя, тепловой пушки, тепловентилятора. Быстрый подбор мощности.

Каталог

Производители

Расчет необходимой тепловой мощности для помещения.

Формула для расчета необходимой тепловой мощности: 

V x T x K = ккал/ч 

Перед выбором нaгревателя (тепловентилятора) необходимо рассчитать минимальную тепловую мощность, необходимую для Вашего конкретного пoмещения. 

Обозначения:

V – объем обогреваемого помещения (ширина х длина х высота), м3
T – Разница между температурой воздуха вне помещения и необходимой температурой внутри помещения,.С
K – коэффициент рассеивания 

K=3,0-4,0 Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа. Без теплоизоляции.
K=2,0-2,9 Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши. Небольшая теплоизоляция.
K=1,0-1,9 Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей. Средняя теплоизоляция.
K=0,6-0,9 Улучшенная конструкция, кирпичные стены с двойной теплоизоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала. Высокая теплоизоляция.

Пример расчета мощности тепловой пушки: 
V – Ширина 4 м, Длина 12 м, Высота 3 м. Объем обогреваемого помещения 144 м3
T– Температура воздуха снаружи -5C Требуемая температура внутри помещения +18C. Разница между температурами внутри и снаружи +23C
K – Этот коэффициент зависит от типа конструкции и изоляции помещения

Итак, требуемая тепловая мощность:
144 x 23 x 4 = 13 248 ккал/ч (Vx TxK = ккал/ч) = /860 = 15,4 кВт

1 кВт = 860 ккал/ч
1 ккал = 3,97 БTe
1 кВт = 3412 БTe
1 БTe = 0,252 ккал/ч 

Теперь можно приступить к выбору модели нагревателя воздуха, тепловой пушки, тепловентилятора.

На 15 кВт можно рекомендовать:

Дизельная тепловая пушка Master B70CED без отвода отработанных газов на 20 кВт (берем с запасом) или Master BV77E (20 кВт) непрямого нагрева.
Газовая тепловая пушка Master BLP17M (10-16 кВт) или BLP 33E (18-33 кВт) с выносным термостатом ТН5.
Электрический тепловентилятор Master B15EPB (0/7,5/15 кВт).
Тепловая пушка на отработанном масле Master WA33 (21-33 кВт).

Выбор типа тепловой пушки зависит от характера помещения, его проветриваемости и необходимого типа энергоносителя. все данные пушки требуют подключения к электросети.

Подобрать обогреватель, купить тепловую пушку по лучшей цене в СПб по тел.: +7 (812)702-76-82. ОПТ и розница. «Инженер-климат»

Расчет мощности обогревателя от Климат в Доме : Полезная информация

Приблизительный расчет мощности обогревателя:

Прежде чем выбирать обогреватель, необходимо рассчитать минимальную тепловую мощность, необходимую для вашего конкретного помещения.

Обычно для приблизительного расчета достаточно объем помещения в кубических метрах разделить на 30. Таким способом обычно и пользуются менеджеры, консультируя покупателей по телефону. Такой расчет позволяет быстро приблизительно прикинуть какая совокупная тепловая мощность может понадобиться для прогрева помещения.

Например, для выбора тепловой пушки в комнату (или офис) площадью 50 м² и высотой потолков 3 м (150 м³) потребуется 5.0 кВт тепловой мощности. Наш расчет выглядит так: 150 / 30 = 5.0

Такой вариант расчетов в основном используется для расчетов дополнительного обогрева в те помещения, где уже есть какое-то отопление и необходимо просто догреть воздух до комфортной температуры.

Однако, такой способ расчета не подойдет для неотапливаемых помещений, а также если необходимо помимо объема помещения учесть разницу температур внутри-снаружи, и конструктивные особенности самого здания (стены, изоляцию и т. п.)

Точный расчет тепловой мощности обогревателя:

Для расчета тепловой мощности, учитывающего дополнительные условия помещения и температурные режимы, используется следующая формула:

V × ΔT × K = ккал/час, или

V × ΔT × K / 860 = кВт, где

V — Объем обогреваемого помещения в кубических метрах;

ΔT — Разница между температурами воздуха внутри и снаружи. Например, если температура воздуха снаружи -5 °C, а необходимая температура внутри помещения +18 °C, то разница температур составляет 23 градуса;

K — Коэффициент теплоизоляции помещения. Он зависит от типа конструкции и изоляции помещения.

K=3.0–4.0 — Упрощенная деревянная конструкция или конструкция из гофрированного металлического листа. Без теплоизоляции.

K=2.0–2.9 — Упрощенная конструкция здания, одинарная кирпичная кладка, упрощенная конструкция окон и крыши. Небольшая теплоизоляция.

K=1.0–1.9 — Стандартная конструкция, двойная кирпичная кладка, небольшое число окон, крыша со стандартной кровлей. Средняя теплоизоляция.

K=0.6–0.9 — Улучшенная конструкция здания, кирпичные стены с двойной изоляцией, небольшое число окон со сдвоенными рамами, толстое основание пола, крыша из высококачественного теплоизоляционного материала. Высокая теплоизоляция.

При выборе значения коэффициента теплоизоляции обязательно нужно учитывать старое это здание или новое, т. к. старые здания требуют большего количества тепла для прогрева (соответственно, значение коэффициента должно быть выше).

Для нашего примера, если учесть разницу температур (например, 23 °C) и уточнить коэффициент теплоизоляции (например, у нас старое здание с двойной кирпичной кладкой, возьмем значение 1.9), то расчет необходимой тепловой мощности обогревателя будет выглядеть так:

150 × 23 × 1.9 / 860 = 7.62

Т. е., как видите, уточненный расчет показал, что для прогрева данного конкретного помещения понадобится большая тепловая мощность обогрева, чем была рассчитана по упрощенной формуле.

Подобный способ расчета применим к любым видам теплового оборудования, за исключением, возможно, инфракрасных обогревателей, т. к. там используется принцип ощущаемого тепла. Для любых других видов обогревателей — водяных, электрических, газовых и жидкотопливных, он подходит.

После вычисления необходимой тепловой мощности можно приступать к выбору типа и модели обогревателя.

Подготовка к олимпиадам: мощность теплопередачи, 8 класс.

Продолжаем подготовку к олимпиадам. Сегодня рассматриваем тему “мощность теплопередачи”. Задачи интересные, и в школе эту тему не дают, заимствованы на «Фоксфорде» – спасибо составителям за удовольствие от решения.

Мощность теплопередачи – количество теплоты, отданное системой за время \tau.

    \[N=\frac{Q}{\tau}\]

Эта мощность зависит от разности температур (если горячее тело вынести на мороз, остывает быстрее, чем если такое же тело вынести на жару), от площади поверхности тела (чем она больше, тем быстрее остынет), от расстояния, на которое тепло передают:

    \[Q=\frac{2S(t_1-t_2)}{l}\]

Задача 1. Ведро воды удалось нагреть кипятильником мощностью 800 Вт лишь до 95^{\circ} С. За какое время ведро остынет до 94^{\circ} С после выключения кипятильника? Масса воды 10 кг.

Задача на прямое применение данной выше формулы. Ведро остывает на 1 градус, следовательно,

    \[\tau =\frac{Q}{ N }=\frac{cm\Delta t}{N}=\frac{4200\cdot 10\cdot 1}{800}=52,5\]

Ответ: 52,5 с.

Задача 2. Петя заметил, что на морозе вода в стакане остывает от 91^{\circ} С до 89^{\circ} С за 3 мин, а от 31^{\circ} С до 29^{\circ} С за 6 мин. Чему равна температура окружающей среды t_0? Считайте, что мощность теплопередачи пропорциональна разности температур стакана и окружающей среды.

Вода и в первом, и во втором случае отдает одно и то же количество теплоты, так как остывает в обоих случаях на три градуса. Тогда

    \[N_1\frac{Q}{\tau_1}\]

    \[N_2\frac{Q}{\tau_2}\]

    \[\frac{ N_2}{ N_1}=\frac{\tau_1}{\tau_2}=\frac{1}{2}\]

Но, с другой стороны,

    \[N_1=k(t_1-t_0)\]

    \[N_2=k(t_2-t_0)\]

t_1 и t_2  -средняя температура воды в первом и во втором случаях. Коэффициент k учитывает все остальные параметры: длины, площади и пр.

Поделим уравнения друг на друга

    \[\frac{ N_2}{ N_1}=\frac{ t_2-t_0}{ t_1-t_0}\]

Или

    \[t_1-t_0= 2t_2-2t_0\]

    \[t_0=2t_2-t_1=2\cdot30-90=-30\]

Ответ: t_0=-30^{\circ}

Задача 3. На плите стоит кастрюля с водой. При нагревании температура воды увеличилась от 90^{\circ} C до 92^{\circ} C за одну минуту. Какая доля теплоты, получаемой водой при нагревании, рассеивается в окружающем пространстве, если время остывания той же воды от 92^{\circ} C до 90^{\circ} C равно 9,0 минутам?

Кастрюлю подогревают – но это не значит, что она не остывает! Вот такой парадокс. Тепло кастрюля все равно отдает, всегда, когда она теплее, чем окружающие предметы. Просто, если кастрюля нагревается, то это означает, что тепло, которое она получает от плитки, больше, чем то, которое она рассеивает.

Поэтому при нагреве

    \[\tau_1(N-N_{rass})=c m \Delta t\]

А при пассивном остывании

    \[\tau_2 N_{rass}=c m \Delta t\]

Тогда

    \[\tau_1(N-N_{rass})=\tau_2 N_{rass}\]

    \[N_{rass}(\tau_1+\tau_2)=\tau_1N\]

Искомая величина:

    \[\frac{ N_{rass}}{N}=\frac{\tau_1}{\tau_1+\tau_2}=\frac{1}{10}\]

Задача 4. В палатке, покрытой сверху шерстяными одеялами, пол застелен толстым теплонепроницаемым войлоком. Одинокий спящий индеец начинает мерзнуть в такой палатке при уличной температуре воздуха 10^{\circ} С. Два спящих индейца начинают мерзнуть в такой палатке при уличной температуре воздуха 4^{\circ} С. При какой температуре воздуха индейцы начинают пользоваться палатками? При какой температуре в той же палате будет холодно трем индейцам? Какому количеству индейцев никогда не будет холодно в палатке? Считайте, что тепловая мощность, передаваемая через тент палатки, пропорциональна разности температур внутри и снаружи.

Индеец теплый, теплее окружающей среды. Он отдает тепло наружному холодному воздуху. Если температура воздуха t_0, мощность теплоотдачи индейца N. Потому что если на улице другая температура, то и мощность уже другая, индеец остывает или быстрее, или медленнее. Пусть температура вокруг индейца, при которой индеец начинает замерзать, t_0. Это может быть и температура наружного воздуха, и температура в палатке. Тогда двое индейцев имеют мощность теплоотдачи 2N, трое – 3N и так далее. Пусть коэффициент k учитывает площадь поверхности индейца, рост, материал, из которого индеец состоит… Тогда

    \[N=k

    \[2N=k

    \[3N=k

    \[nN=k

Разделим второе на первое:

    \[2=\frac{ t_0-t_2}{ t_0-t_1}\]

    \[t_0=2t_1-t_2=2\cdot10-4=16\]

Разделим третье на первое:

    \[3=\frac{ t_0-t_3}{ t_0-t_1}\]

    \[t_0=3t_1-2t_0=3\cdot10-2\cdot16=-2\]

Разделим четвертое на первое:

    \[n=\frac{ t_0-t_n}{ t_0-t_1}\]

Тогда, если температура на улице t_n=-273, то

    \[n=\frac{ 16+273}{ 16-10}=48,17\]

Таким образом, 48-49 индейцев не должны замерзнуть даже при абсолютном нуле.

Задача 5. Система охлаждения нагревателя состоит из нескольких одинаковых теплопроводящих стержней, соединенных небольшими шариками. Температура нагревателя T_n=100^{\circ}С, температура холодильника T_x=30^{\circ} С.  Чему равна разность температур шарика K и шарика B  (T_K-T_B) в установившемся режиме? Приток тепла в системе осуществляется только от нагревателя, а отвод только через холодильник. Мощность теплопередачи через стержень пропорциональна разности температур на его концах.

теплопередача

Рисунок 1

Расставим направления потоков тепла. В центре все понятно: все стрелки направлены от горячего к холодному «очагу» – холодильнику. А что по верхним правому и левому углам?

теплопередача

Рисунок 2

Точка A ближе к холодильнику, чем B, поэтому направление потока логично будет выбрать от B к A.

теплопередача

Рисунок 3

Точка B дальше от нагревателя, чем C, поэтому ставим стрелку от C к B.

теплопередача

Рисунок 4

Теперь определим величины этих потоков. Если от B к A направлен поток N, то от C к B – тоже N. Но тогда от A к холодильнику – 2N, так как в силу симметрии в левой части расстановка потоков такая же.

теплопередача

Рисунок 5

Если теперь пройти от точки C к холодильнику по красной стрелке, наберется 4N, следовательно, поток от точки C к холодильнику тоже 4N. Тогда от нагревателя к точке C будет течь поток 5N, и в левой части аналогично.

теплопередача

Рисунок 6

Следовательно, если пройти от нагревателя к холодильнику через точку C по стрелке, поток будет равен 14N. Тогда и “напрямки” тоже 14N.

Но температура холодильника и нагревателя отличается на 70^{\circ}, поэтому

    \[14N=70\]

    \[N=5\]

Тогда расставляем температуры узлов: в точке C и симметричной ей слева 30^{\circ}+4\cdot5=50^{\circ}, в точке B50^{\circ}-N=45^{\circ}, в точке K100^{\circ} -5N=75^{\circ}.

Определяем искомое:

    \[T_K-T_B=75^{\circ}-45^{\circ}=30^{\circ}\]

Ответ: T_K-T_B=30^{\circ}.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *