Пдк гидрокарбонаты в воде: Щёлочность, гидрокарбонат-ион | Лаборатория МГУ. Сделать анализ воды. Методы исследования и показатели качества. Исследование качества воды и почвы в Москве – ПОКАЗАТЕЛИ КАЧЕСТВА ВОДЫ И ИХ ОПРЕДЕЛЕНИЕ — Биострой-Аква

Пдк гидрокарбонаты в воде: Щёлочность, гидрокарбонат-ион | Лаборатория МГУ. Сделать анализ воды. Методы исследования и показатели качества. Исследование качества воды и почвы в Москве – ПОКАЗАТЕЛИ КАЧЕСТВА ВОДЫ И ИХ ОПРЕДЕЛЕНИЕ — Биострой-Аква
Авг 09 2020
admin

Гидрокарбонаты в питьевой воде | Северянка

Гидрокарбонаты в питьевой воде

2016-03-28

ООО «Научно-инновационная фирма «Эко-Проект» Санкт-Петербург, ул. Латышских Стрелков, д. 19 +78123206867

Admin

Гидрокарбонаты в питьевой воде – это компоненты, определяющие ее щелочность. Их содержание в воде объясняется несколькими процессами:

  • растворением атмосферного углекислого газа;
  • взаимодействием воды с известняками, которые находятся в прилегающем грунте;
  • жизненными процессами дыхания организмов, жизнь которых протекает в воде.

гидрокарбонаты в питьевой водеОпределяя, в какой концентрации находятся гидрокарбонаты в питьевой воде, мы в большинстве случаев можем повлиять на повышение щелочности питьевой воды (поскольку остальные ее составляющие – карбонат-ионы и гидроксид-ионы — присутствуют в воде в несопоставимо меньших концентрациях).

Гидрокарбонаты в питьевой воде уменьшают количество водородных ионов, приводят к уменьшению кислотности и повышению щелочности. Благодаря высокой концентрации гидрокарбонатов некоторые минеральные воды могут использоваться для лечения гастритов и повышенной кислотности желудочного сока. В умеренных концентрациях гидрокарбонат-ионы необходимы качественной питьевой воде для поддержания нормальной щелочности, оптимального значения рН и приемлемых органолептических характеристик.

Зачем насыщать воду гидрокарбонатами

Гидрокарбонаты в воде нужны для того, чтобы корректировать водородный показатель pH воды и улучшить ее вкусовые свойства. Если щелочность низкая, уровень pH будет нестабилен вследствие низкой буферной емкости такой воды. Низкая (практически нулевая) щелочность и пониженные уровни рН характерны, в частности, для воды после очистки обратным осмосом.

Гидрокарбонаты в воде (природной) – это прежде всего соли кальция и магния (гидрокарбонаты этих элементов существуют только в растворенном состоянии). При нагреве и кипячении растворенные гидрокарбонаты элементов жесткости перейдут в нерастворимые карбонаты, и вода станет мягче.

При необходимости (например, после обратного осмоса) гидрокарбонаты в воде повышают, используя специально разработанные для этого минеральные добавки на основе бикарбонатов натрия и калия. Помимо повышения щелочности питьевой воды и коррекции рН, эти добавки улучшают её вкус.

11 3.8

Рейтинг: 3.8/5 — 11 голосов

Некоторые аспекты гидрохимического режима воды местных источников

Воронина Тамара Николаевна – кандидат химических наук, доцент кафедры неорганической химии ЯГПУ им. К. Д. Ушинского, Ганина Галина Ивановна — кандидат химических наук, доцент кафедры неорганической химии ЯГПУ им. К. Д. Ушинского, Отюкова Наталия Геннадьевна – старший лаборант-исследователь лаборатории гидрологии и гидрохимии ИБВВ РАН, Цельмович Ольга Леонидовна – научный сотрудник лаборатории гидрологии и гидрохимии ИБВВ РАН

Гидрохимический режим рек складывается под воздействием целого комплекса условий, определяемых физико-географической обстановкой, свойственной данной территории.

Хлорид-ион – важнейший показатель минерализации и генезиса природных вод. Первичными их источниками являются магматические породы, в состав которых входят хлорсодержащие минералы. Значительное содержание поступает в воду в результате обмена с океаном через атмосферу, взаимодействия атмосферных осадков с почвами, особенно засоленными, а также при вулканических выбросах. Возрастающее значение приобретают промышленные и хозяйственно-бытовые сточные воды.

Хлорид-ионы обладают наибольшей миграционной способностью, что объясняется хорошей растворимостью солей, слабо выраженной способностью к сорбции на взвесях и потреблением водными организмами. В речных водах и водах пресных озер их содержание колеблется от долей миллиграмма до десятков, сотен, а иногда тысяч миллиграммов на литр, в морских и подземных водах содержание значительно выше – вплоть до пересыщенных растворов и рассолов.

Концентрация хлорид-ионов в поверхностных водах подвержена заметным сезонным колебаниям, коррелирующим с изменением общей минерализации воды. Эти колебания могут служить одним из критериев загрязненности водоема хозяйственно-бытовыми стоками. ПДК хлорид-ионов в природных водах составляет 300 мг/л. Повышенное содержание ухудшает вкусовые качества воды, делает ее малопригодной для питьевого водоснабжения и ограничивает применение для многих технических и хозяйственных целей, а также для орошения сельскохозяйственных угодий.

Знание содержания и поведения хлорид-ионов в водах необходимо при решении вопросов их круговорота в природе и процессов соленакопления.

Большая часть (около 80%) поверхностных вод относится к гидрокарбонатному классу, т. к. среди главных анионов в них преобладают гидрокарбонаты. Содержанием гидрокарбонатных и карбонатных ионов обусловливается щелочность воды.

Щелочность — это концентрация суммы анионов слабых кислот (главным образом анионов угольной кислоты), присутствующих в воде.

Основным источником гидрокарбонатных ионов в поверхностных водах являются процессы химического выветривания и растворения карбонатных пород типа известняков, мергелей, доломитов. Значительные количества гидрокарбонатных ионов поступают с атмосферными осадками и грунтовыми водами.

В поверхностных водах гидрокарбонат-ионы присутствуют главным образом в растворенном состоянии. В речных водах их содержание колеблется от 30 до 500 мг/л. Концентрация этих ионов подвержена заметным сезонным колебаниям.

Главным источником сульфат-ионов в поверхностных водах являются процессы химического выветривания и растворения серосодержащих минералов, в основном гипса, а также окисления сульфидов и серы. Значительные количества поступают в водоемы в процессе отмирания организмов и окисления наземных и водных веществ растительного и животного происхождения и с подземным стоком.

Сульфат-ионы выносятся со сточными водами предприятий, с бытовыми стоками и водами, выносимыми с сельскохозяйственных угодий.

В речных водах содержание сульфат-ионов колеблется от 5 до 60 мг/л. Повышенное содержание ухудшает органолептические свойства воды и оказывает физиологическое воздействие на организм. ПДК сульфат-ионов в природных водах составляет 500 мг/л.

Определение хлорид-ионов

Меркуриметрический метод определения массовой концентрации хлорид-ионов основан на взаимодействии хлорид-ионов с ионами ртути (II) с образованием малодиссоциированного соединения хлорида ртути.

Избыток ионов ртути (II) образует с индикатором дифенилкарбазоном в кислой среде (рН = 2,5  0,2) окрашенное в фиолетовый цвет комплексное соединение.

Стандартизация раствора нитрата ртути по раствору хлорида натрия

В коническую колбу для титрования наливают 90 см3 дистиллированной воды, приливают 10 см3 раствора хлорида натрия, перемешивают, добавляют 0,3 см3 смешанного индикатора, вводят по каплям раствор азотной кислоты до перехода окраски от синей к желтой, дополнительно приливают 1 см3 раствора азотной кислоты (для установления рН = 2,5) и титруют раствором нитрата ртути (II) до изменения желтой окраски на фиолетовую.

Точную концентрацию раствора нитрата ртути находят по формуле:

C = 0,05 · 10 / V , где

10 – аликвотная часть раствора NaCl, см3; С – концентрация раствора нитрата ртути(II), моль/дм3; 0,05 – концентрация раствора хлорида натрия, моль/дм3.

Выполнение измерений

100 см3 исследуемой воды переносят в коническую колбу для тирования, добавляют 0,3 см3 смешанного индикатора. Если анализируемый раствор окрашивается в желтый цвет, то добавляют по каплям раствор гидроксида натрия до перехода желтой окраски в синюю, затем вводят по каплям раствор азотной кислоты до желтого окрашивания раствора, дополнительно приливают 1см3 раствора азотной кислоты (анализируемый раствор должен иметь рН = 2,5  0,2) и тируют раствором нитрата ртути (II) до фиолетового окрашивания.

Если после добавления смешанного индикатора анализируемая проба окрашивается в синий цвет, то, исключив добавление раствора гидроксида натрия, добавляют по каплям раствор азотной кислоты и далее как указано выше.

Холостое измерение проводят со 100 см3 дистиллированной воды, проводя через весь ход анализа.

Вычисления

Содержание хлорид-ионов Х (мг/дм3) рассчитывают по формуле:

X = (V1 — V0) · C · 35,45 · 1000 / V, где

V1 – объем раствора нитрата ртути (II), пошедший на титрование анализируемой прбы, см3; V0 — объем раствора нитрата ртути, пошедший на титрование холостой пробы, см3; С – концентрация раствора нитрата ртути; 35,45 – молярная масса хлорид-иона, г/моль; V – объем пробы, взятой на анализ, см3.

Определение гидрокарбонат-ионов

Тириметрический метод определения массовой концентрации гидрокарбонатов основан на взаимодействии гидрокарбонатных ионов с сильной кислотой с образованием слабой угольной кислоты, распадающейся в растворе на воду и свободный СО2.

Стандартизация раствора соляной кислоты

10 см3 раствора НС1 с концентрацией 0,05 моль/дм3 переносят в коническую колбу, добавляют 90 см3 свободной от С02 дистиллированной воды и 10 капель раствора индикатора. Титруют раствором буры до перехода окраски от малиновой к интенсивно зеленой.

Точную концентрацию раствора НС1 находят по формуле:

СK = CБ · VБ / VК, где

Ск — молярная концентрация раствора НС1 моль/дм3; СБ — молярная концентрация эквивалента раствора буры, моль/дм3; VБ — объем раствора буры, израсходованный на титрование, см3; VК — объем раствора НС1, взятый для титрования, см3.

Выполнение измерений

В коническую колбу вносят 100 см3 пробы. Добавляют 10 капель раствора индикатора и приливают такой объем раствора НС1, чтобы содержимое колбы приняло малиновую окраску. Затем добавляют еще 4 см3 раствора НС1 и удаляют С02 кипячением в течение 10 мин. Пробу охлаждают и титруют раствором буры до появления устойчивой зеленой окраски.

Вычисления

Содержание гидрокарбонат-ионов в пробе воды Х, мг/дм3, находят по формуле:

Х = 61,02 · (СК · VК — CБ · VБ) · 1000 / V , где

СК — молярная концентрация раствора НС1, моль/дм3; VК — объем раствора НС1, добавленный в пробу, см3; СБ — молярная концентрация эквивалента раствора буры, моль/дм3; VБ — объем раствора буры, пошедший на титрование, см3; V — объем пробы воды, см3; 61,02 – молярная масса гидрокарбонат-иона, г/моль.

Определение сульфат-ионов

Турбидиметрический метод основан на определении сульфат-иона в виде BaS04 в солянокислой среде с помощью гликолевого реагента. Гликоль, введенный в реакционную смесь при осаждении сульфата бария, стабилизирует образующуюся суспензию BaS04 и делает возможным турбидиметрическое микроопределение сульфатов.

Выполнение измерений

К 5 см3 исследуемой пробы прибавляют 1 — 2 капли раствора НС1 и 5 см3 гликолевого реагента, тщательно перемешивают. После 30 мин. экспозиции измеряют оптическую плотность раствора на фотоэлектроколориметре. Исследуемая проба воды с добавлением гликолевого реагента, приготовленного без BaCl2, является раствором сравнения. Содержание сульфатов находят по калибровочной кривой.

Экспериментальная часть.

Объектом исследования была малая река Латка бассейна Рыбинского водохранилища. Длина Латки — 15 км, площадь водосбора — 35,1 км2 .

Цель работы — исследование химического состава малых водотоков как среды обитания гидробионтов и выявление возможных нарушений под влиянием антропогенных факторов.

Задача исследования – провести определение хлорид-, гидрокарбонат- и сульфат-ионов в воде р. Латки и сделать выводы о гидрохимическом режиме реки в различное время года.

Материал был собран в мае, августе и октябре 1999г. на пяти станциях: 1 — фоновая, 2 — бобровый пруд, 3 — место сброса сточных вод сырзавода, 4 — в 2 км ниже сброса, 5 — в 6,5 км ниже сброса.

Результаты исследования представлены в таблицах.

Таблица 1

Содержание хлорид-ионов в реке Латка, мг/дм3

№ станции

май

август

октябрь

X

Хср.

X

Хср.

X

Хср.

1

6,58

6,56

19,00

18,97

14,70

14,68

6,54

18,97

14,70

6,56

18,94

14,66

2

6,58

6,56

17,20

17,19

15,56

15,52

6,54

17,18

15,52

6,54

17,20

15,48

3

7,90

7,89

109,40

109,36

61,93

61,93

7,90

109,32

61,93

7,88

109,40

61,93

4

8,35

8,33

22,52

22,51

21,50

21,44

8,31

22,50

21,50

8,35

22,51

21,38

5

11,47

11,43

20,80

20,74

18,10

18,06

11,39

20,80

18,02

11,43

20,68

18,06

Таблица 2

Содержание гидрокарбонат-ионов в реке Латка, мг/дм3

№ станции

май

август

октябрь

X

Хср.

X

Хср.

X

Хср.

1

329,0

328,9

391,1

391,1

430,9

430,8

329,0

391,1

430,7

328,8

391,1

430,8

2

332,7

332,6

379,1

379,2

405,8

405,8

332,7

379,3

405,8

332,5

379,1

405,8

3

325,3

325,2

318,6

318,5

400,9

400,8

325,4

318,4

400,9

325,1

318,5

400,7

4

309,9

309,9

316,4

316,4

391,0

390,5

400,0

316,6

390,0

309,8

316,2

390,0

5

310,6

310,6

296,6

296,6

329,6

329,4

310,6

296,2

329,4

310,6

296,8

329,2

Таблица 3

Содержание сульфат-ионов в реке Латка, мг/дм3

№ станции

май

август

октябрь

X

Хср.

X

Хср.

X

Хср.

1

3,35

3,3

14,0

14,1

18,0

18,0

3,31

14,0

18,0

3,31

14,2

18,0

2

2,5

2,5

11,0

10,7

14,5

14,4

2,5

10,7

14,4

2,5

10,4

14,3

3

3,3

3,3

98,2

98,0

11,8

11,8

3,3

98,0

11,7

3,3

97,9

11,9

4

11,1

11,1

4,8

4,8

14,7

14,7

11,1

5,0

14,7

11,1

4,6

14,7

5

7,0

6,9

12,4

12,4

15,6

15,8

7,0

12,3

15,6

6,8

12,5

16,0

Обсуждение результатов эксперимента

Весной содержание хлорид-ионов в воде р. Латки было в пределах 6,56 — 11,43 мг/дм3. Содержание сульфат-ионов колебалось от 2,5 (бобровый пруд) до 11,1 мг/дм3 (ст.4). Гидрокарбонат-ионы держались в пределах 309,9 — 332,6 мг/дм3.

В период засушливого лета влияние сточных вод сырзавода отрицательно сказалось на содержании хлорид-ионов на ст. З: 109,36 мг/дм3. Также сточные воды отрицательно сказались и на содержании сульфат-ионов: 98,0 мг/дм3. Но благодаря активно идущему процессу самоочищения следующая станция (№4) характеризуется уже лучшими показателями: 22,51 мг/дм3 хлорид-ионов и 4,8 мг/дм3 сульфат-ионов.

Показатель содержания гидрокарбонат-ионов постепенно снижался от фонового значения (391,1 мг/дм3) к водохралилищу (296,6 мг/дм3 на ст. 5).

Осенью на содержание хлорид-ионов также повлияли стоки сырзавода (61,93 мг/дм3 на ст.З). Содержание сульфат-ионов было в пределах 11,8 — 18,0 мг/дм3, а гидрокарбонат-ионов уменьшалось от фонового значения (430,8 мг/дм3) к водохранилищу (329,4 мг/дм3 наст.5).

Таким образом, полученные результаты позволяют заключить, что изменение химического состава воды р. Латки носит сезонный характер.

Изменение концентрации хлорид- и сульфат-ионов обусловлено поступлением сточных вод сырзавода. Влияние стоков наиболее заметно в период летней межени (когда объем водного стока резко уменьшается), а также в октябре при отсутствии дождевых паводков.

Данная работа является лишь малой частью комплексных исследований по изучению взаимосвязей между развитием гидробионтов и химическими, гидрологическими, геоморфическими характеристиками среды.

Список литературы

Алекин О. А. Гидрохимия. Л.: Гидрометеорологическое изд-во, 1952.

Лаптев Ф.Ф. Анализ воды. Госгеолтехиздат, М., 1995.

Перечень ПДК и ОБУВ вредных веществ для воды рыбохозяйственных водоемов. М, 1995.

Посохов Е.В. Формирование хлоридных вод гидросферы. Л.: Гидрометеоиздат, 1975.

Руководство по химическому анализу поверхностных вод суши под ред. А. Д. Семенова. Гидрометеоиздат, Л., 1977.

Для подготовки данной работы были использованы материалы с сайта http://www.yspu.yar.ru

Дата добавления: 27.10.2005

Гидрокарбонаты — Википедия

Материал из Википедии — свободной энциклопедии

Модель иона гидрокарбоната HCO3 Bicarbonate-resonance.png

Гидрокарбона́ты — кислые соли угольной кислоты H2CO3. Формула аниона: HCO−
3. Устаревшие названия гидрокарбонатов: кислый, углекислый, двууглекислый, бикарбонаты.

Гидрокарбонаты щелочных металлов растворимы в воде. Также в воде хорошо растворимы гидрокарбонаты щёлочноземельных металлов, в отличие от карбонатов.

  • Гидрокарбонаты образуются при длительном пропускании CO2 через раствор, содержащий карбонат:
CaCO3+h3O+CO2→Ca(HCO3)2{\displaystyle {\mathsf {CaCO_{3}+H_{2}O+CO_{2}\rightarrow Ca(HCO_{3})_{2}}}}
NaCl+Nh4+CO2+h3O→NaHCO3+Nh5Cl{\displaystyle {\mathsf {NaCl+NH_{3}+CO_{2}+H_{2}O\rightarrow NaHCO_{3}+NH_{4}Cl}}}

Гидрокарбонат натрия плохо растворим в холодной воде, поэтому его можно отделить от хлорида аммония фильтрованием.

  • При нагревании гидрокарбонаты разлагаются на соответствующий карбонат, воду и углекислый газ:
2NaHCO3→Na2CO3+h3O+CO2{\displaystyle {\mathsf {2NaHCO_{3}\rightarrow Na_{2}CO_{3}+H_{2}O+CO_{2}}}}
  • Гидролиз гидрокарбонат-иона происходит по схеме:
HCO3−+h3O⇄OH−+h3CO3{\displaystyle {\mathsf {HCO_{3}^{-}+H_{2}O\rightleftarrows OH^{-}+H_{2}CO_{3}}}}

В итоге раствор гидрокарбонатов имеет щелочную реакцию.

  • Реагирует со щелочами:
HCO3−+OH−→CO32−+h3O{\displaystyle {\mathsf {HCO_{3}^{-}+OH^{-}\rightarrow CO_{3}^{2-}+H_{2}O}}}
HCO3−+H+→h3O+CO2↑{\displaystyle {\mathsf {HCO_{3}^{-}+H^{+}\rightarrow H_{2}O+CO_{2}\uparrow }}}

Гидрокарбонат натрия (сода) используется в производстве искусственных минеральных вод и заправки огнетушителей, в кондитерском деле и хлебопечении, в быту, в медицине.

Гидрокарбонаты кальция и магния Са(НСО3)2, Mg(НСО3)2 обусловливают временную жёсткость воды[1].

В организме гидрокарбонаты являются буферными веществами, регулирующими постоянство реакции крови[1].

  • Кнунянц И. Л. и др. т. 3 Мед-Пол // Химическая энциклопедия. — М.: Большая Российская Энциклопедия, 1992. — 639 с. — 50 000 экз. — ISBN 5-85270-039-8.
  • Ф. Н. Капуцкий, В. Ф. Тикавый. Пособие по химии для поступающих в вузы. — Минск: Выш. школа, 1979. — С. 384.
  • Г. П. Хомченко. Химия для поступающих в вузы. — М.: Высшая школа, 1994. — С. 447.
  1. 1 2 [1]XuMuK.ru — гидрокарбонаты

РД 52.24.493-2006 Массовая концентрация гидрокарбонатов и величина щелочности поверхностных вод суши и очищенных сточных вод. Методика выполнения измерений титриметрическим методом

На главную | База 1 | База 2 | База 3
Поиск по реквизитамПоиск по номеру документаПоиск по названию документаПоиск по тексту документа
Искать все виды документовДокументы неопределённого видаISOАвиационные правилаАльбомАпелляционное определениеАТКАТК-РЭАТПЭАТРВИВМРВМУВНВНиРВНКРВНМДВНПВНПБВНТМ/МЧМ СССРВНТПВНТП/МПСВНЭВОМВПНРМВППБВРДВРДСВременное положениеВременное руководствоВременные методические рекомендацииВременные нормативыВременные рекомендацииВременные указанияВременный порядокВрТЕРВрТЕРрВрТЭСНВрТЭСНрВСНВСН АСВСН ВКВСН-АПКВСПВСТПВТУВТУ МММПВТУ НКММПВУП СНЭВУППВУТПВыпускГКИНПГКИНП (ОНТА)ГНГОСТГОСТ CEN/TRГОСТ CISPRГОСТ ENГОСТ EN ISOГОСТ EN/TSГОСТ IECГОСТ IEC/PASГОСТ IEC/TRГОСТ IEC/TSГОСТ ISOГОСТ ISO GuideГОСТ ISO/DISГОСТ ISO/HL7ГОСТ ISO/IECГОСТ ISO/IEC GuideГОСТ ISO/TRГОСТ ISO/TSГОСТ OIML RГОСТ ЕНГОСТ ИСОГОСТ ИСО/МЭКГОСТ ИСО/ТОГОСТ ИСО/ТСГОСТ МЭКГОСТ РГОСТ Р ЕНГОСТ Р ЕН ИСОГОСТ Р ИСОГОСТ Р ИСО/HL7ГОСТ Р ИСО/АСТМГОСТ Р ИСО/МЭКГОСТ Р ИСО/МЭК МФСГОСТ Р ИСО/МЭК ТОГОСТ Р ИСО/ТОГОСТ Р ИСО/ТСГОСТ Р ИСО/ТУГОСТ Р МЭКГОСТ Р МЭК/ТОГОСТ Р МЭК/ТСГОСТ ЭД1ГСНГСНрГСССДГЭСНГЭСНмГЭСНмрГЭСНмтГЭСНпГЭСНПиТЕРГЭСНПиТЕРрГЭСНрГЭСНсДИДиОРДирективное письмоДоговорДополнение к ВСНДополнение к РНиПДСЕКЕНВиРЕНВиР-ПЕНиРЕСДЗемЕТКСЖНМЗаключениеЗаконЗаконопроектЗональный типовой проектИИБТВИДИКИМИНИнструктивное письмоИнструкцияИнструкция НСАМИнформационно-методическое письмоИнформационно-технический сборникИнформационное письмоИнформацияИОТИРИСОИСО/TRИТНИТОсИТПИТСИЭСНИЭСНиЕР Республика КарелияККарта трудового процессаКарта-нарядКаталогКаталог-справочникККТКОКодексКОТКПОКСИКТКТПММ-МВИМВИМВНМВРМГСНМДМДКМДСМеждународные стандартыМетодикаМетодика НСАММетодические рекомендацииМетодические рекомендации к СПМетодические указанияМетодический документМетодическое пособиеМетодическое руководствоМИМИ БГЕИМИ УЯВИМИГКМММНМОДНМонтажные чертежиМос МУМосМРМосСанПинМППБМРМРДСМРОМРРМРТУМСанПиНМСНМСПМТМУМУ ОТ РММУКМЭКННАС ГАНБ ЖТНВННГЭАНДНДПНиТУНКНормыНормы времениНПНПБНПРМНРНРБНСПНТПНТП АПКНТП ЭППНТПДНТПСНТСНЦКРНЦСОДМОДНОЕРЖОЕРЖкрОЕРЖмОЕРЖмрОЕРЖпОЕРЖрОКОМТРМОНОНДОНКОНТПОПВОПКП АЭСОПНРМСОРДОСГиСППиНОСНОСН-АПКОСПОССПЖОССЦЖОСТОСТ 1ОСТ 2ОСТ 34ОСТ 4ОСТ 5ОСТ ВКСОСТ КЗ СНКОСТ НКЗагОСТ НКЛесОСТ НКМОСТ НКММПОСТ НКППОСТ НКПП и НКВТОСТ НКСМОСТ НКТПОСТ5ОСТНОСЭМЖОТРОТТПП ССФЖТПБПБПРВПБЭ НППБЯПВ НППВКМПВСРПГВУПереченьПиН АЭПисьмоПМГПНАЭПНД ФПНД Ф СБПНД Ф ТПНСТПОПоложениеПорядокПособиеПособие в развитие СНиППособие к ВНТППособие к ВСНПособие к МГСНПособие к МРПособие к РДПособие к РТМПособие к СНПособие к СНиППособие к СППособие к СТОПособие по применению СППостановлениеПОТ РПОЭСНрППБППБ-АСППБ-СППБВППБОППРПРПР РСКПР СМНПравилаПрактическое пособие к СППРБ АСПрейскурантПриказПротоколПСРр Калининградской областиПТБПТЭПУГПУЭПЦСНПЭУРР ГазпромР НОПРИЗР НОСТРОЙР НОСТРОЙ/НОПР РСКР СМНР-НП СРО ССКРазъяснениеРаспоряжениеРАФРБРГРДРД БГЕИРД БТРД ГМРД НИИКраностроенияРД РОСЭКРД РСКРД РТМРД СМАРД СМНРД ЭОРД-АПКРДИРДМРДМУРДПРДСРДТПРегламентРекомендацииРекомендацияРешениеРешение коллегииРКРМРМГРМДРМКРНДРНиПРПРРТОП ТЭРС ГАРСНРСТ РСФСРРСТ РСФСР ЭД1РТРТМРТПРУРуководствоРУЭСТОП ГАРЭГА РФРЭСНрСАСанитарные нормыСанитарные правилаСанПиНСборникСборник НТД к СНиПСборники ПВРСборники РСН МОСборники РСН ПНРСборники РСН ССРСборники ценСБЦПСДАСДАЭСДОССерияСЗКСНСН-РФСНиПСНиРСНККСНОРСНПСОСоглашениеСПСП АССП АЭССправочникСправочное пособие к ВСНСправочное пособие к СНиПСправочное пособие к СПСправочное пособие к ТЕРСправочное пособие к ТЕРрСРПССНССЦСТ ССФЖТСТ СЭВСТ ЦКБАСТ-НП СРОСТАСТКСТМСТНСТН ЦЭСТОСТО 030 НОСТРОЙСТО АСЧМСТО БДПСТО ВНИИСТСТО ГазпромСТО Газпром РДСТО ГГИСТО ГУ ГГИСТО ДД ХМАОСТО ДОКТОР БЕТОНСТО МАДИСТО МВИСТО МИСТО НААГСТО НАКССТО НКССТО НОПСТО НОСТРОЙСТО НОСТРОЙ/НОПСТО РЖДСТО РосГеоСТО РОСТЕХЭКСПЕРТИЗАСТО САСТО СМКСТО ФЦССТО ЦКТИСТО-ГК «Трансстрой»СТО-НСОПБСТПСТП ВНИИГСТП НИИЭССтП РМПСУПСССУРСУСНСЦНПРТВТЕТелеграммаТелетайпограммаТематическая подборкаТЕРТЕР Алтайский крайТЕР Белгородская областьТЕР Калининградской областиТЕР Карачаево-Черкесская РеспубликаТЕР Краснодарского краяТЕР Мурманская областьТЕР Новосибирской областиТЕР Орловской областиТЕР Республика ДагестанТЕР Республика КарелияТЕР Ростовской областиТЕР Самарской областиТЕР Смоленской обл.ТЕР Ямало-Ненецкий автономный округТЕР Ярославской областиТЕРмТЕРм Алтайский крайТЕРм Белгородская областьТЕРм Воронежской областиТЕРм Калининградской областиТЕРм Карачаево-Черкесская РеспубликаТЕРм Мурманская областьТЕРм Республика ДагестанТЕРм Республика КарелияТЕРм Ямало-Ненецкий автономный округТЕРмрТЕРмр Алтайский крайТЕРмр Белгородская областьТЕРмр Карачаево-Черкесская РеспубликаТЕРмр Краснодарского краяТЕРмр Республика ДагестанТЕРмр Республика КарелияТЕРмр Ямало-Ненецкий автономный округТЕРпТЕРп Алтайский крайТЕРп Белгородская областьТЕРп Калининградской областиТЕРп Карачаево-Черкесская РеспубликаТЕРп Краснодарского краяТЕРп Республика КарелияТЕРп Ямало-Ненецкий автономный округТЕРп Ярославской областиТЕРрТЕРр Алтайский крайТЕРр Белгородская областьТЕРр Калининградской областиТЕРр Карачаево-Черкесская РеспубликаТЕРр Краснодарского краяТЕРр Новосибирской областиТЕРр Омской областиТЕРр Орловской областиТЕРр Республика ДагестанТЕРр Республика КарелияТЕРр Ростовской областиТЕРр Рязанской областиТЕРр Самарской областиТЕРр Смоленской областиТЕРр Удмуртской РеспубликиТЕРр Ульяновской областиТЕРр Ямало-Ненецкий автономный округТЕРррТЕРрр Ямало-Ненецкий автономный округТЕРс Ямало-Ненецкий автономный округТЕРтр Ямало-Ненецкий автономный округТехнический каталогТехнический регламентТехнический регламент Таможенного союзаТехнический циркулярТехнологическая инструкцияТехнологическая картаТехнологические картыТехнологический регламентТИТИ РТИ РОТиповая инструкцияТиповая технологическая инструкцияТиповое положениеТиповой проектТиповые конструкцииТиповые материалы для проектированияТиповые проектные решенияТКТКБЯТМД Санкт-ПетербургТНПБТОИТОИ-РДТПТПРТРТР АВОКТР ЕАЭСТР ТСТРДТСНТСН МУТСН ПМСТСН РКТСН ЭКТСН ЭОТСНэ и ТЕРэТССЦТССЦ Алтайский крайТССЦ Белгородская областьТССЦ Воронежской областиТССЦ Карачаево-Черкесская РеспубликаТССЦ Ямало-Ненецкий автономный округТССЦпгТССЦпг Белгородская областьТСЦТСЦ Белгородская областьТСЦ Краснодарского краяТСЦ Орловской областиТСЦ Республика ДагестанТСЦ Республика КарелияТСЦ Ростовской областиТСЦ Ульяновской областиТСЦмТСЦО Ямало-Ненецкий автономный округТСЦп Калининградской областиТСЦПГ Ямало-Ненецкий автономный округТСЦэ Калининградской областиТСЭМТСЭМ Алтайский крайТСЭМ Белгородская областьТСЭМ Карачаево-Черкесская РеспубликаТСЭМ Ямало-Ненецкий автономный округТТТТКТТПТУТУ-газТУКТЭСНиЕР Воронежской областиТЭСНиЕРм Воронежской областиТЭСНиЕРрТЭСНиТЕРэУУ-СТУказУказаниеУказанияУКНУНУОУРврУРкрУРррУРСНУСНУТП БГЕИФАПФедеральный законФедеральный стандарт оценкиФЕРФЕРмФЕРмрФЕРпФЕРрФормаФорма ИГАСНФРФСНФССЦФССЦпгФСЭМФТС ЖТЦВЦенникЦИРВЦиркулярЦПИШифрЭксплуатационный циркулярЭРД
Показать все найденныеПоказать действующиеПоказать частично действующиеПоказать не действующиеПоказать проектыПоказать документы с неизвестным статусом
Упорядочить по номеру документаУпорядочить по дате введения

Карбонаты и гидрокарбонаты в колодезной воде

Наличие карбонатов и гидрокарбонатов (солей угольной кислоты) в колодезной воде определяет ее важный показатель щелочность.

В большинстве случаев эти вещества определяют неустранимую жесткость и жесткость воды. Сами соединения образуются в результате взаимодействия водоносного слоя с известняками почвы и углекислого газа атмосферы в водной среде.

Второй, не маловажный процесс образования карбонатов и гидрокарбонатов — взаимодействие углекислого газа, образующегося в процессе дыхания микроорганизмов. Следовательно, показатель количества ионов этих солей может косвенно указывать на биологическую загрязненность источника воды.

Любопытно, что карбонат ионы производят ощелачивание воды до 8.0-8.2 pH. Вода становится горьковатая на вкус и мылкая на ощупь. Мыла и шампуни в ней тяжело смываются с кожи или волос. В процессе кипячения образуется накипь и жесткость устраняется этим процессом.

Гидрокарбонаты (сода) слегка закисляют воду, приводя ее к pH от 4.1-4.15. Вода приобретает характерный содовый вкус и легкий запах. При кипячении осадок не образуется. Таким образом эти соли определяют не устранимую жесткость воды. При заболеваниях почек, желчного пузыря большое количество гидрокарбонатов в воде могут образовывать камни в этих органах. Возникновение камней в почках обусловлено излишками гидрокарбонатов и наличие органических и неорганических кислот живого организма: лимонной, щавелевой и ортофосфорной кислот и специфики строения органа. Так, оксалатные камни появляются за счет комплексных солей, как результат взаимодействия гидрокарбонатов воды и щавелевой кислоты.

Надо отметить, что наличие карбонатов и гидрокарбонатов никак не связано со способом получения воды, а значит и водопроводная вода может содержать излишки этих веществ.

Нормальное содержание солей в воде играют важную роль в организме. В процессе дыхания, пищеварения и т.д. происходит явления преобразования гидрокарбонатов в угольную кислоту и обратно. В результате поддерживается необходимый pH организма. Излишки щелочей крови вступают в реакцию с угольной кислотой и в результате образуются гидрокарбонат и вода. Если кислотность крови возрастает, то происходит взаимодействие кислот с гидрокарбонатами. В итоге возникают нейтральные соли и угольная кислота. В легких кислота распадается на углекислый газ и воду, которые удаляются в процессе дыхания. Так, в нашем организме каждую минуту образуется 10 ммоль угольной кислоты.

Влияние гидрокарбонатов на организм человека

Существует множество типов минеральных вод. Их основными составляющими являются натрий, калий, магний и гидрокарбонат. Дополняя друг друга в различных пропорциях, они положительно влияют на организм человека, особенно если их правильно употреблять.

Магний содержится во многих типах минеральных вод. Он влияет главным образом на желудочно-кишечный тракт. Его соли, как и соли натрия оказывают на организм послабляющее действие. Натрий в свою очередь оказывает сильное действие на работу пищеварительного тракта. Калий приводит организм в тонус и усиливает двигательную активность кишечника и желудка. Гидрокарбонат играет важную роль в поддержании кислотного баланса в организме.

В сочетании с натрием гидрокарбонат образует питьевую соду. Она играет главную роль в поддержании кислотно-щелочного баланса. Если кровь в организме очень кислая, то наступает ацидоз. Если показатель кислотности ниже нормы, организм умирает. Причины низкого показателя кислотности могут служить яды в еде, жидкостях и воздухе, лекарства. Так же люди травят сами себя психическими ядами, которые появляются от страха, злости, зависти и прочих негативных эмоций. Потеря психической энергии приводит к недостатку щелочей (соды), появляются камни в кочках, печени, желчном пузыре, организм намного легче отравляется продуктами плохого пищеварения, так ака оно сильно ухудшается. Также в кислой среде прекрасно уживаются глисты, цепни и прочие. Сода уничтожает лишнюю кислотность в организме человека и паразиты гибнут в щелочной среде. Когда в организме избыток кислоты, слюна становится кислой, из-за чего разрушается эмаль зубов. От щелочной слюны зубы не разрушаются.

Самое интересное, что избытка гидрокарбоната натрия, то есть соды, в организме быть не может, так как он легко выводится почками.

В щелочной среде с активированной водой возрастает активность витаминов группы В. Витамины, которые имеют огненную природу, могут полноценно проявлять ее только в щелочной среде, что невозможно, если в организме недостаточно гидрокарбоната натрия.

Соду нужно принимать ежедневно для того, чтобы не было запоров, диабета, также, для того, чтобы кишечник был очищенным и хорошо работал желудок. Сода предупреждает множество заболеваний. Также она мешает развитию и распространению в организме метастаз, из-за которых появляется рак, потому что они ищут в организме слабое место, чтобы пригреться там и благополучно развиваться. А слабое место – это кислая среда и разные воспаления в органах.

При рождении показатель кислотности в организме составляет 7,41 РН, а когда человек умирает, он уже колеблется от 5,41 до 4,5 РН. Рак возникает при снижении показателя до 5,41 РН. Лучше всего клетки в организме могут бороться с раком, когда в нем 7,41 РН.

Организм находится в нормальном состоянии, когда оно слабо-щелочное. Кислая среда благоприятна для распространения бактерий и раковых клеток.

Химические свойства воды, ПДК по фтору, нитратам, хлору в воде

Окисляемость

Окисляемость показывает количество кислорода в миллиграммах, необходимого для окисления органических веществ, содержащихся в 1 дм³ воды.

Воды поверхностных и подземных источников имеют разную окисляемость — у подземных вод величина окисляемости незначительна, за исключением болотных вод и вод нефтяных месторождений. Окисляемость горных рек ниже, чем равнинных. Наибольшая величина окисляемости (до десятков мг/дм³) — у рек с питанием болотными водами.

Величина окисляемости закономерно изменяется в течение года. Окисляемость характеризуется несколькими величинами — перманганатной, бихроматной, йодатной окисляемостью (в зависимости от того, какой окислитель используется).

ПДК окисляемости воды имеют следующие значения: химическое потребление кислорода или бихроматная окисляемость (ХПК) водоемов питьевого назначения не должна превышать 15 мг О₂ /дм³. Для водоемов в зонах рекреации величина ХПК не должна превышать 30 мг О₂ /дм³.

Показатель pH

Водородный показатель (pH) природной воды показывает количественное содержание в ней угольной кислоты и ее ионов.

Санитарно-гигиенические нормативы для водоемов разного типа водопользования (питьевого, рыбохозяйственного, рекреационных зон) устанавливают ПДК pH в интервале 6,5-8,5.

Концентрация ионов водорода, выраженная величиной pH — один из важнейших показателей качества воды. Величина pH имеет решающее значение при протекании многочисленных химических и биологических процессов в природной воде. Именно от величины pH зависит, какие растения и организмы будут развиваться в данной воде, каким образом будет происходить миграция элементов, от этой величины также зависит степень коррозионной активности воды на металлические и бетонные конструкции.

От величины pH зависят пути превращения биогенных элементов и степени токсичности загрязняющих веществ.

Жесткость воды

Жесткость природной воды проявляется вследствие содержания в ней растворенных солей кальция и магния. Суммарное содержание ионов кальция и магния является общей жесткостью. Жесткость можно выражать несколькими единицами измерения, на практике чаще используют величину мг-экв/дм³.

Высокая жесткость ухудшает бытовые характеристики и вкусовые свойства воды, оказывает неблагоприятное воздействие на здоровье человека.

ПДК по жесткости питьевой воды нормируется величиной 10,0 мг-экв/дм³.

К технической воде отопительных систем предъявляют более строгие требования по жесткости их-за вероятности образования накипи в трубопроводах.

Аммиак

Присутствие аммиака в природной воде обусловлено разложением азотсодержащих органических веществ. Если аммиак в воде образуется при разложении органических остатков (фекальное загрязнение), то такая вода непригодна для питьевых нужд. Аммиак определяется в воде по содержанию ионов аммония NH₄⁺.

ПДК аммиака в воде составляет 2,0 мг/дм³.

Нитриты

Нитриты NO₂⁻ являются промежуточным продуктом биологического окисления аммиака до нитратов. Процессы нитрификации возможны только в аэробных условиях, в противном случае природные процессы идут по пути денитрификации — восстановления нитратов до азота и аммиака.

Нитриты в поверхностных водах находятся в виде нитрит-ионов, в кислых водах частично могут быть в форме недиссоциированной азотистой кислоты (HN0₂).

Содержание нитритов в поверхностных водах существенно ниже, чем в водах подземного происхождения. Подземные воды верхних водоносных горизонтов могут содержать нитритов до десятых долей миллиграмма на литр.

ПДК нитритов в воде составляет 3,3 мг/дм³ (по нитрит-иону), или 1 мг/дм³ в пересчете на азот аммонийный. Для водоемов рыбохозяйственного назначения нормы составляют 0,08 мг/дм³ по нитрит-иону или 0,02 мг/дм³ в пересчете на азот.

Нитраты

Нитраты по сравнению с другими азотными соединениями наименее токсичны, однако в значительных концентрациях вызывают вредные последствия для организмов. Основная опасность нитратов — в их способности накапливаться в организме и окисляться там до нитритов и нитрозаминов, которые значительно более токсичны и способны вызывать так называемое вторичное и третичное нитратное отравление.

Накопление больших количеств нитратов в организме способствует развитию метгемоглобинемии. Нитраты вступают в реакцию с гемоглобином крови и образуют метгемоглобин, которые не переносит кислород и, таким образом, вызывает кислородное голодание тканей и органов.

Подпороговая концентрация нитрата аммония, не оказывающая вредных последствий на санитарный режим водоема составляет 10мг/дм³.

Для водоемов рыбохозяйственного назначения повреждающие концентрации нитратов аммония для различных видов рыб начинаются с величин порядка сотен миллиграммов на литр.

ПДК нитратов для питьевой воды составляет 45 мг/дм³ , для рыбохозяйственных водоемов —40 мг/дм³ по нитратам или 9,1 мг/дм³ по азоту.

Хлориды

Хлориды в повышенной концентрации ухудшают вкусовые качества воды, а при высокой концентрации делают воду непригодной для питьевых целей. Для технических и хозяйственных целей содержание хлоридов также строго нормируется. Вода, в которой много хлоридов непригодна для орошения сельскохозяйственных насаждений.

ПДК хлоридов в питьевой воде не должно превышать 350 мг/дм³, в воде рыбохозяйственных водоемов — 300мг/дм³.

Сульфаты

Сульфаты в питьевой воде ухудшают ее органолептические показатели, при высоких концентрациях оказывают физиологическое воздействие на организм человека. Сульфаты в медицине используются как слабительное средство, поэтому их содержание в питьевой воде строго нормируется.

Содержание сульфатов в технической воде также подлежит контролю. В присутствии кальция сульфаты образуют накипь, что важно учитывать при подготовке вод, питающих паросиловые установки.

Содержание сульфатов в промышленной и питьевой воде может быть благоприятным или нежелательным фактором.

Сульфат магния определяется в воде на вкус при содержании от 400 до 600 мг/дм³, сульфат кальция — от 250 до 800 мг/дм³.

ПДК сульфатов для питьевой воды — 500 мг/дм³, для вод рыбохозяйственных водоемов —100 мг/дм³.

О влиянии сульфатов на процессы коррозии нет достоверных данных, но отмечается, что при содержании сульфатов в воде свыше 200 мг/дм³ из свинцовых труб вымывается свинец.

Железо

Соединения железа поступают в природную воду из природных и антропогенных источников. Значительные количества железа поступают в водоемы вместе со сточными водами металлургических, химических, текстильных и сельскохозяйственных предприятий.

При концентрации железа свыше 2 мг/дм³ ухудшаются органолептические показатели воды— в частности, появляется вяжущий привкус.

Высокое содержание железа делает воду непригодной для питьевых и технических целей.

ПДК железа в питьевой воде 0,3 мг/дм³,при лимитирующем показатели вредности – органолептическом. Для вод рыбохозяйственных водоемов — 0,1 мг/дм³, лимитирующий показатель вредности — токсикологический.

Фтор

Высокие концентрации фтора наблюдаются в сточных водах стекольных, металлургических и химических производств (при производстве удобрений, стали, алюминия и др.), а также на горнорудных предприятиях.

Содержание фтора в питьевой воде нормируется. Повышенное содержание фтора в питьевой воде вызывает заболевание костной ткани — флюороз. Недостаток фтора тоже опасен. В местностях, где в питьевой воде содержание фторидов понижено – менее 0,01 мг/дм³, у людей чаще развивается кариес зубов.

ПДК по фтору в питьевой воде составляет 1,5 мг/дм³, при лимитирующем показателе вредности санитарно-токсикологическом.

Щелочность

Щелочность — показатель, логически противоположный кислотности. Щелочность природных и технических вод – способность содержащихся в них ионов нейтрализовать эквивалентное количество сильных кислот.

Показатели щелочности воды необходимо учитывать при реагентной подготовке воды, в процессах водоснабжения, при дозировании химических реагентов.

Если концентрация щелочноземельных металлов повышена, знание щелочности воды необходимо при определении пригодности воды для систем орошения.

Щелочность воды и показатель pH используются в расчете баланса угольной кислоты и определении концентрации карбонат-ионов.

Кальций

Поступление кальция в природные воды идет из естественных и антропогенных источников. Большое количество кальция поступает в природные водоемы со стоками металлургических, химических, стекольных и силикатных производств, а также при стоке с поверхности сельхозугодий, где применялись минеральные удобрения.

ПДК кальция в воде рыбохозяйственных водоемов составляет 180 мг/дм³.

Ионы кальция относятся к ионам жесткости, которые образуют прочную накипь в присутствии сульфатов, карбонатов и некоторых других ионов. Поэтому содержание кальция в технических водах, питающих паросиловые установки, строго контролируется.

Количественное содержание в воде ионов кальция необходимо учитывать при исследовании карбонатно-кальциевого равновесия, а также при анализе происхождения и химсостава природных вод.

Алюминий

Алюминий известен как легкий серебристый металл. В природных водах он присутствует в остаточных количествах в виде ионов или нерастворимых солей. Источники попадания алюминия в природные воды — сточные воды металлургических производств, переработки бокситов. В процессах водоподготовки соединения алюминия применяют в качестве коагулянтов.

Растворенные соединения алюминия отличаются высокой токсичностью, способны накапливаться в организме и приводить к тяжелым поражениям нервной системы.

ПДК алюминия в питьевой воде не должна превышать 0,5 мг/дм³.

Магний

Магний — один из важнейших биогенных элементов, играющий большую роль в жизнедеятельности живых организмов.

Антропогенные источники поступления магния в природные воды— сточные воды металлургии, текстильной, силикатной промышленности.

ПДК магния в питьевой воде — 40 мг/дм³.

Натрий

Натрий — щелочной металл и биогенный элемент. В небольших количествах ионы натрия выполняют важные физиологические функции в живом организме, в высоких концентрациях натрий вызывает нарушение работы почек.

В сточных водах натрий поступает в природные воды преимущественно с орошаемых сельхозугодий.

ПДК натрия в питьевой воде составляет 200 мг/дм³.

Марганец

Элемент марганец содержится в природе в виде минеральных соединений, а для живых организмов является микроэлементом, то есть в малых количествах необходим для их жизнедеятельности.

Значительное поступление марганца в природные водоемы происходит со стоками металлургических и химических предприятий, горно-обогатительных фабрик и шахтных производств.

ПДК ионов марганца в питьевой воде —0,1 мг/дм³, при лимитирующем показателе вредности органолептическом.

Избыточное поступление марганца в организм человека нарушает метаболизм железа, при тяжелых отравлениях возможны серьезные психические расстройства. Марганец способен постепенно накапливаться в тканях организма, вызывая специфические заболевания.

Хлор остаточный

Используемый для обеззараживания воды гипохлорит натрия присутствует в воде в виде хлорноватистой кислоты или иона гипохлорита. Использование хлора для дезинфекции питьевых и сточных вод, несмотря на критику метода, до сих пор широко используется.

Хлорирование также применяется в процессах изготовления бумаги, ваты, для дезинсекции холодильных установок.

В природных водоемах активный хлор присутствовать не должен.

ПДК свободного хлора в питьевой воде 0.3 — 0.5 мг/дм³.

Углеводороды (нефтепродукты)

Нефтепродукты — одни из наиболее опасных загрязнителей природных водоемов. Нефтепродукты попадают в природные воды несколькими путями: в результате разливов нефти при авариях нефтеналивных судов; со сточными водами нефтегазовой промышленности; со сточными водами химических, металлургических и других тяжелых производств; с хозяйственно-бытовыми стоками.

Небольшие количества углеводородов образуются в результате биологического разложения живых организмов.

Для санитарно-гигиенического контроля определяются показатели содержания растворенной, эмульгированной и сорбированной нефти, поскольку каждый перечисленный вид по-разному влияет на живые организмы.

Растворенные и эмульгированные нефтепродукты оказывают многообразное неблагоприятное воздействие на растительный и животный мир водоемов, на здоровье человека, на общее физико-химическое состояние биогеоценоза.

ПДК нефтепродуктов для питьевой воды —0,3 мг/дм³, при лимитирующем показатели вредности органолептическом. Для водоемов рыбохозяйственного назначения ПДК нефтепродуктов 0,05 мг/дм³.

Полифосфаты

Полифосфатные соли используются в процессах водоподготовки для умягчения технической воды, в качестве компонента средств бытовой химии, как катализатор или ингибитор химических реакций, как пищевая добавка.

ПДК полифосфатов для воды хозяйственно-питьевого назначения — 3,5 мг/дм³, при лимитирующем показатели вредности органолептическом.

Кремний

Кремний – распространенный в земной коре элемент, входит в состав многих минералов. Для организма человека является микроэлементом.

Значительное содержание кремния наблюдается в сточных водах керамических, цементных, стекольных и силикатных производств, при производстве вяжущих материалов.

ПДК кремния в питьевой воде — 10 мг/дм³.

Сульфиды и сероводород

Сульфиды — серосодержащие соединения, соли сероводородной кислоты H₂S. В природных водах содержание сероводорода позволяет судить об органическом загрязнении, поскольку сероводород образуется при гниении белка.

Антропогенные источники сероводорода и сульфидов — хозяйственно-бытовые сточные воды, стоки металлургических, химических и целлюлозных производств.

Высокая концентрация сероводорода придает воде характерный неприятный запах (тухлых яиц) и токсичные свойства, вода становится непригодной для технических и хозяйственно-питьевых целей.

ПДК по сульфидам — в водоемах рыбохозяйственного назначения содержание сероводорода и сульфидов недопустимо.

Стронций

Химически активный металл, в естественной форме является микроэлементом растительных и животных организмов.

Повышенные поступления стронция в организм изменяют метаболизм кальция в организме. Возможно развитие стронциевого рахита или «уровской болезни», при которой наблюдается задержка роста и искривление суставов.

Радиоактивные изотопы стронция вызывают у человека канцерогенный эффект или лучевую болезнь.

ПДК природного стронция в питьевой воде составляет 7 мг/дм³, при лимитирующем показателе вредности санитарно-токсикологическом.

Отправить ответ

avatar
  Подписаться  
Уведомление о