Калькулятор расчета объема и площади трубы
Инструкция для калькулятора онлайн расчета площади и объема трубы
Все параметры указываем в мм
L – Труба в длину.
D1 – Диаметр по внутренней части.
D2 – Диаметр по внешней части трубы.
При помощи данной программы, Вы сможете рассчитать объем воды или другой любой жидкости в трубе.
Для точного вычисления объема системы отопления к полученному результату необходимо прибавить объем отопительного котла и радиаторов. Как правило, эти параметры указаны в паспорте на изделии.
По результатам подсчетов, Вы узнаете объем трубопровода общий, на погонный метр, площадь поверхности трубы. Как правило, площадь поверхности применяется для подсчета требуемого количества лакокрасочного материала.
При вычислении необходимо указать наружный и внутренний диаметр трубопровода и его длину.
Где,
L— длина трубопровода.
R1— внутренний радиус.
R2— наружный радиус.
Как правильно выполняются вычисления объема тел
Расчет объема цилиндра, труб и других физических тел – классическая задача из прикладной науки и инженерной деятельности. Как правило, данная задача не является тривиальной. Согласно аналитическим формулам для вычисления объема жидкостей в различных телах и емкостях может оказаться очень затруднительным и громоздким. Но, в основном объем простых тел можно вычислить достаточно просто. К примеру, при помощи нескольких математических формул Вы сможете определить объем трубопровода. Как правило, количество жидкости в трубах определяется значением м3 или метры кубические. Однако в нашей программе, Вы получаете все расчеты в литрах, а площадь поверхности определяется в м2 – квадратных метрах.
Полезная информация
Размеры стальных трубопроводов для газоснабжения, отопления или водоснабжения указываются в целых дюймам (1″,2″) или его долях (1/2″, 3/4″). За 1″ согласно общепринятым меркам принимают 25,4 миллиметра. На сегодняшний день стальные трубы можно встретить в усиленном (с двойной стенкой) или в обычном исполнении.
Для усиленного и обычного трубопровода внутренние диаметры отличаются от стандартных – 25,4 миллиметра: так в усиленном, этот параметр составляет 25,5 миллиметров, а в стандартном или обычном – 27,1 миллиметр. Отсюда следует, что незначительно, но эти параметры отличаются, что тоже следует учесть при выборе труб для отопления или водоснабжения. Как правило, специалисты не особо вникают в эти подробности, так как для них важным условием является — Ду (Dn) или условный проход. Данная величина является безразмерной. Этот параметр можно определить с помощью специальных таблиц. Но нам не стоит вникать в эти подробности.
Стыковка различных стальных труб, размер которых представлен в дюймах с алюминиевыми, медными, пластиковыми и другими, данные которых представлены в миллиметрах, предусмотрены специальные переходники.
Как правило, данный вид расчета труб необходим в процессе вычисления размера расширительного бачка для отопительной системы. Объем воды в системе обогрева комнаты или дома, рассчитывается с помощью нашей программы в онлайн-режиме. Однако, зачастую, этими данными неопытные специалисты просто пренебрегают, что не стоит делать. Так как, для эффективного функционирования отопительной системы нужно учесть все параметры, чтобы правильно выбрать котел, насос и радиаторы. Также немаловажным объем жидкости в трубопроводе будет в том случае, когда вместо воды будет использовать антифриз в системе обогрева, который является достаточно дорогим и переплаты в этом случае будут излишни.
Чтобы определить объем жидкости необходимо правильно замерять наружный и внутренний диаметр трубопровода.
Важно! Не стоит пренебрегать результатами расчета при проектировании отопительной системы. В противном случае Вы рискуете не правильно выбрать котел по мощности, который будет неэффективным и неэкономичным в процессе эксплуатации, и как следствие помещения будут плохо обогреваться.
Примерный расчет можно выполнить исходя из пропорции 15 л жидкости на 1 кВт мощности отопительного котла
К примеру, у Вас котел на 4 кВт, отсюда получаем объем всей системы равен 60 литров (4х15)
Мы привели точные значения объема жидкости для разных радиаторов в системе отопления.
Объем воды:
- старая чугунная батарея в 1 секции – 1,7 литра;
- новая чугунная батарея в 1 секции – 1 литр;
- биметаллический радиатор в 1 секции – 0,25 литра;
- алюминиевый радиатор в 1 секции – 0,45 литра.
Заключение
Теперь Вы знаете, как можно правильно и быстро вычислить объем трубы для водоснабжения или системы отопления.
Калькулятор расчета объёма жидкости в цистерне онлайн
Инструкция для калькулятора количества и объема жидкости в цистерне
Размеры вводите в миллиметрах:
D – диаметр емкости можно замерить рулеткой. Необходимо помнить что диаметр – это отрезок наибольшей длины, соединяющий две точки на окружности и проходящий через ее центр.
H – уровень жидкости замеряют, используя метршток, но если такого инструмента нет под рукой, воспользуйтесь обычным стержнем из проволоки или деревянной планкой подходящей длины. Соблюдая меры безопасности, опустите строго вертикально стержень в цистерну до дна, отметьте на нем уровень, достаньте и измерьте рулеткой. Также определить
L – длина емкости.
Если необходим чертеж в бумажном виде, целесообразно отметить пункт «Черно-белый чертеж». Вы получите контрастное изображение и сможете его распечатать, не расходуя зря цветную краску или тонер.
Нажмите «Рассчитать» и получите следующие данные:
Объём емкости – этот параметр характеризует полный объём цистерны, т.
Количество жидкости – сколько вещества находится в цистерне на данный момент.
Свободный объём позволяет оценить, сколько жидкости еще можно залить в емкость.
В результате, Вы получаете расчет не только объема цистерны, но и объема жидкости в неполной цистерне.
Изделия из металла следует периодически красить, тогда срок их службы значительно возрастет. Зная площадь передней поверхности
Расчет диаметра трубопровода, скорости потока рабочей жидкости | Мир гидравлики
Расчет диаметра трубопровода, скорости потока рабочей жидкости
При проведении расчетов по определению диаметра трубопровода (магистрали) и скорости прохождения по нему рабочей жидкости необходимо учитывать его принципиальное назначение. Магистрали гидравлической системы делятся на всасывающие, напорные и сливные.
Ниже приведена справочная информация, по рекомендуемой скорости прохождения потока жидкости в трубопроводах и магистралях гидропривода.
При проектировании (объемного гидропривода) расчетная скорость жидкости (ед. измерения, м/с) должна быть в пределах указанных значений справочной таблицы.
Для вычисления скоростного показателя V рабочей жидкости (единица измерения м/сек), используются параметры:
1) Внутренний диаметр применяемой трубы диаметр d (мм)
2) Подача от гидравлического насоса Q (л/мин)
Для правильного подбора соответствующего диаметра магистрали (напорной, всасывающей и сливной)
1) Подберите в предложенном справочном блоке, оптимальный скоростной показатель для рассчитываемого трубопровода V, (м/сек)
2) Заполните форму подача насоса
Далее нажимаем «Вычислить d», для получения рассчитываемого параметра.
Заполните формы
Справочный блок рекомендуемой скорости прохождения потока в трубопроводе:
назначение | скорость | допустимая скорость потока жидкости |
1. Всасывающий трубопровод | v | от 0.50 до 1 м/сек. |
2. Сливной трубопровод | от 1.250 до 3 м/сек. | |
3. Напорный трубопровод | v | 3.20 м/сек. при давлении свыше 100 бар,(10МПа) |
4. Напорный трубопровод | v | от 3.50 до 5 м/сек. при давлении свыше 150 бар,(15МПа) |
5. Напорный трубопровод | v | от 5.250 до 7 м/сек. при давлении свыше 200 бар,(20МПа) |
6. Напорный трубопровод | v | от 7. 250 до 9 м/сек. при давлении свыше 350 бар,(35МПа) |
Если давление в МПа необходимо произвести пересчет их в бары, прим.(1МПа = 10 бар)
Примечание, для разделения разрядов используйте «.»(точка)
Потери давления на преодоление сил трения зависят от параметров и скорости движения жидкости, а также параметров трубопровода.
Зависимость свойств воды от температуры
ВСЕ РАСЧЁТЫ |
Глава 5. Движение жидкости в напорном трубопроводе
5.1. Общие сведения по гидравлическому расчету трубопроводов
При расчете трубопроводов рассматривается установившееся, равномерное напорное движение любой жидкости, отвечающее турбулентному режиму, в круглоцилиндрических трубах. В напорных трубопроводах жидкость находится под избыточным давлением, а поперечные сечения их полностью заполнены. Движение жидкости по трубопроводу происходит в результате того, что напор в начале его больше, чем в конце.
Гидравлический расчет производится с целью определения диаметра трубопровода d при известной длине для обеспечения пропуска определенного расхода жидкости Q или установления при заданном диаметре и длине необходимого напора и расхода жидкости. Трубопроводы в зависимости от длины и схемы их расположения подразделяются на простые и сложные. К простым трубопроводам относятся трубопроводы, не имеющие ответвлений по длине, с постоянным одинаковым расходом.
Трубопроводы состоят из труб одинакового диаметра по всей длине или из участков труб разных диаметров и длин. Последний случай относится к последовательному соединению.
Простые трубопроводы в зависимости от длины с участком местных сопротивлений разделяют на короткие и длинные. Короткими трубопроводами являются трубопроводы с достаточно малой длиной, в которых местные сопротивления составляют более 10% гидравлических потерь по длине. Например, к ним относят: сифонные трубопроводы, всасывающие трубы лопастных насосов, дюкеры (напорные водопроводные трубы под насыпью дороги), трубопроводы внутри зданий и сооружений и т.п.
Длинными трубопроводами называют трубопроводы сравнительно большой длины, в которых потери напора по длине значительно преобладают над местными потерями. Местные потери составляют менее 510% потерь по длине трубопровода, и поэтому ими можно пренебречь или ввести при гидравлических расчетах увеличивающий коэффициент, равный 1,051,1. Длинные трубопроводы входят в систему водопроводных сетей, водоводов насосных станций, водоводов и трубопроводов промышленных предприятий и сельскохозяйственного назначения и т.п.
Сложные трубопроводы имеют по длине различные ответвления, т.е. трубопровод состоит из сети труб определенных диаметров и длин. Сложные трубопроводы подразделяются на параллельные, тупиковые (разветвленные), кольцевые (замкнутые) трубопроводы, которые входят в водопроводную сеть.
Гидравлический расчет трубопровода сводится, как правило, к решению трех основных задач:
определение расхода трубопровода Q, если известны напор H, длина l и диаметр d трубопровода, с учетом наличия определенных местных сопротивлений или при их отсутствии;
определение потребного напора H, необходимого для обеспечения пропуска известного расхода Q по трубопроводу длиной l и диаметром d;
определение диаметра трубопровода d в случае известных величин напора H, расхода Q и длины l.
5.2. Расчет коротких трубопроводов
При расчете коротких трубопроводов учитываются как местные потери напора, так и потери по длине.
Для определения пропускной способности трубопровода, т.е. расхода, проходящего через него, можно использовать следующее уравнение:
, (5.1)
где — коэффициент расхода системы; — площадь поперечного сечения трубопровода; — разность напоров в начальном и конечном его сечениях, равная суммарным гидравлическим потерям напора при движении жидкости в трубопроводе.
Коэффициент расхода системы для трубопровода постоянного диаметра
,
где — сумма всех коэффициентов местных сопротивлений; — сопротивление по длине l трубопровода диаметром d; -коэффициент гидравлического трения.
В случае нахождения потребного напора, необходимого для обеспечения пропускной способности Q, исходное выражение согласно (4. 150)
(5.2)
или согласно (4.158)
, (5.3)
где — коэффициент сопротивления системы; — сопротивление трубопровода.
Когда требуется найти диаметр трубопровода, применяют формулы, приведенные ранее. Данная задача тогда решается методом подбора диаметра. Задаваясь разными диаметрами, вычисляется при известном расходе средняя скорость, число Рейнольдса, выбирается область сопротивления исходя из числа Re и . Эквивалентная шероховатость будет зависеть от типа выбранного трубопровода. Согласно выбранной области сопротивления по формуле А. Альтшуля (4.95) или Колбрука (4.94) находится коэффициент гидравлического трения. Определенному диаметруd будут соответствовать потери напора (),которые равны потребному напору.
Задача будет решена, когда при подобранном диаметре трубопровода.
Диаметр можно найти, построив график ,на котором, отложив по координате известный напор , определяетсяd. Так, соответствует диаметр , -.
Рассмотрим расчет некоторых трубопроводов.
Расчет всасывающей трубы центробежного насоса
Всасывающая труба центробежного насоса представляет собой водовод от места забора воды (водоем) до насоса (рис. 5.1). На входе в насос в сечении 2-2 установлен вакуумметр.
Рис. 5.1. К расчету всасывающей трубы насоса:
а — центробежный насос; b — всасывающий трубопровод;
с — клапан с решеткой; — расстояние от уровня воды в водоеме до оси насоса
При заданном расходе Q среднюю скорость потока в трубе V обычно принимают в пределах м/с. Задавшись скоростью, можно определить площадь сечения всасывающей трубы:
При известном расходе Q во всасывающем трубопроводе диаметр этого трубопровода будет
. (5.4)
Составим уравнение Бернулли для сечений 1-1 и 2-2 относительно плоскости сравнения 0-0, совпадающей с уровнем воды в водоеме и сечением 1-1, где давление равно атмосферному, а скорость . Сечение2-2 принимаем на всасывающем трубопроводе на входе в насос:
, (5.5)
где ; — высота всасывания, т.е. расстояние по вертикали от плоскости 1-1 до оси насоса; — скорость на входе в насос и в самой всасывающей трубе; — суммарные потери напора в трубе.
Давление в сечении 2-2 принимаем равным абсолютному, т.е. .
Суммарные гидравлические потери в трубопроводе
, (5.6)
где — средняя скорость потока трубе, ; — коэффициент гидравлического трения; ,d — длина и диаметр трубопровода соответственно; — сумма коэффициентов местных сопротивлений трубопровода.
Абсолютное давление на входе в насос ( — вакуумметрическое давление на входе в насос). Уравнение Бернулли можно записать как
(5.7)
или
. (5.8)
Обозначим , — вакуумметрический напор.
применительно к лопастному насосу называется вакуумметрической высотой всасывания. зависит от конструктивных особенностей насоса и расхода, .
Из уравнения (5.8) можно определить высоту всасывания насоса:
. (5.9)
Таким образом, высота всасывания насоса зависит от вакуумметрической высоты всасывания насоса и гидравлических потерь во всасывающем трубопроводе.
Вакуумметрическая высота всасывания определяется по кавитационной характеристике насоса.
♦ Пример 5.1
Вода (°С) из водонапорной башни подается в приемный резервуар по новому трубопроводу из сварных стальных труб диаметромd длиной м. На трубопроводе имеется задвижка, обратный клапан.
Определить диаметр трубопровода при условии открытия задвижки на и обеспечении расходал/с. Разность уровней воды в башне и резервуаре считать постоянной и равнойм (рис. 5.2).
Рис. 5.2. К примеру 5.1
Составив уравнение Бернулли для сечений 1-1 и 2-2, проведя плоскость сравнения по сечению 2-2, получим , где — гидравлические потери в трубопроводе:
.
Средняя скорость в трубопроводе
.
Коэффициент гидравлического трения находим по формуле для квадратичной области сопротивления.
Шероховатость сварных стальных труб мм (см. табл. 3.1).
Сумма коэффициентов местных сопротивлений
,
где — коэффициент сопротивлений на входе в трубу из резервуара;- сопротивление обратного клапана;- сопротивление задвижки; — сопротивление колена; — сопротивление на выходе из трубы в резервуар.
По табл. П1.4 приложения находим значения :
; ;;.
В табл. 4.2 находим при открытии на 0,75:.
.
Коэффициент сопротивления системы
.
Задаемся разными диаметрами d, определим , среднюю скорость, и потери напора.
Вычисления сводим в табл. 5.1.
Таблица 5.1
№ п/п | d, м | V, м/с | ||||
1 | 0,2 | 0,0145 | 8,7 | 31,3 | 2,55 | 11,37 |
2 | 0,225 | 0,0141 | 7,52 | 30,12 | 2,01 | 6,82 |
3 | 0,25 | 0,0137 | 6,57 | 29,17 | 1,63 | 4,43 |
4 | 0,275 | 0,0134 | 5,83 | 28,43 | 1,35 | 2,64 |
Строим график (рис. 5.3). На графике по вертикальной оси откладываем м, проводим горизонтальную линию до пересечения с кривой.
Сносим полученную в результате пересечения точку на горизонтальную ось d, получаем м. Согласно ГОСТ на стальные трубы ближайший внутренний диаметр (условный проход)мм. Принимаеммм.
Рис. 5.3. К примеру 5.1
Трубопроводы с насосной подачей жидкости
Рассмотрим схему насосной установки, включающую центробежный насос, всасывающий и напорный трубопроводы (рис. 5.4). Напорный трубопровод представляет собой водовод, идущий от насосной установки до резервуара. Насосная установка, подающая воду в открытый резервуар, должна осуществить подъем ее расходом Q на геодезическую высоту и, кроме того, обеспечить преодоление сопротивлений движению воды во всасывающей и напорных трубах, характеризующихся гидравлическими потерями . В этом случае потребный напор
(5. 10)
Суммарные гидравлические потери напора
, (5.11)
где и — коэффициенты гидравлического трения всасывающего и напорного трубопроводов; , — суммы коэффициентов местных сопротивлений во всасывающем и напорном трубопроводах; и — длины всасывающего и напорного трубопроводов; и — диаметры трубопроводов; и — средние скорости в трубопроводах.
Рис. 5.4. Схема насосной установки
Средняя скорость во всасывающем и напорном трубопроводах:
; .
После подстановки в формулу (5.11) выражений для средних скоростей получим, что гидравлические потери
. (5.12)
Значение в формуле (5.12) — сопротивление трубопроводов насосной установки. Потребный напор для подъема воды на высоту и на преодоление гидравлических потерь в трубопроводах будет
. (5.13)
Построенная графически зависимость называется кривой потребного напора (характеристикой насосной установки). Кривая потребного напора используется для определения режима работы насосной установки.
Сифонный трубопровод
Сифонный трубопровод (сифон) представляет собой короткий трубопровод, соединяющий питающий резервуар А и приемный резервуар В, часть которого располагается выше уровня жидкости в резервуаре А (рис. 5.5). Разность уровней жидкости в резервуарах равна Н.
Рис. 5.5. Сифон
При возникновении в верхней части трубопровода давления меньше атмосферного создается разность давлений между атмосферным на поверхности жидкости питающего резервуара и вакуумметрическим давлением в верхней части сифона. За счет разности давлений при полном заполнении трубопровода сифона жидкость поднимается на высоту над уровнем в резервуаре А, а затем перетекает в приемный резервуар В.
Для заполнения трубопровода жидкостью и создания вакуумметрического давления в верхней части сифона применяются вакуумные насосы.
Гидравлический расчет сифонных трубопроводов принципиально не отличается от расчета обычных водоводов.
Рассмотрим установившееся движение жидкости в сифонном трубопроводе. Напишем уравнение Бернулли для сечений 1-1 и 2-2, совпадающих с уровнями жидкости в резервуарах А и В, относительно плоскости сравнения 0-0 (см. рис. 5.5):
. (5.14)
Давления в сечениях 1-1 и 2-2 соответствуют атмосферному . Принимаем, что скорости в сечениях и;, .
Из уравнения Бернулли получаем
. (5.15)
Гидравлические потери в трубопроводе
,
где V — средняя скорость движения жидкости в трубе сифона; ,d — длина и диаметр трубы сифона; — коэффициент гидравлического трения; — сумма коэффициентов местных сопротивлений.
Расход жидкости через сифон согласно формуле (5. 1) будет
,
.
Для определения давления в верхнем сечении сифонного трубопровода (сечение х-х) составляем уравнение Бернулли для сечений 1-1 и х-х, в котором потери напора определяются на расстоянии между этими сечениями.
Плоскость сравнения в этом случае совпадает с плоскостью свободной поверхности в резервуаре А (сечение 1-1), ,.
Давление в сечении х-х примем равным абсолютному , .
Подставляя в уравнение Бернулли известные величины, получаем
. (5.16)
Вакуумметрическое давление в верхнем сечении сифона х-х
.
Из (5.16) вакуумметрический напор в верхнем сечении, , равен
, (5.17)
где — суммарный коэффициент местных сопротивлений на участке трубопровода до сечения х-х.
При расчете сифонов важным условием является определение давления в сечении трубопровода, наиболее высоко расположенного, где имеет место наибольшее разряжение. Для уменьшения разряжения в указанном сечении, возможно, окажется целесообразным увеличение сопротивления в нисходящей ветви сифона, что может быть осуществлено установкой задвижки за этим сечением. При этом нужно иметь в виду, что введение задвижки одновременно вызовет некоторое снижение расхода.
В результате уменьшения абсолютного давления в верхней части трубопровода может возникнуть кавитация. Кавитация произойдет, если давление насыщенных паров ()в трубопроводе будет больше абсолютного давления . При кавитации из жидкости будет выделяться растворимый газ и пузырьки пара, что приведет к снижению расхода жидкости в сифоне, и он может резко уменьшиться. Резкое снижение расхода в результате нарушения сплошности потока жидкости приводит к срыву работы сифона, подача жидкости в приемный резервуар В прекращается.
В сифонных трубопроводах появление кавитации обусловливается геометрической конфигурацией и принципом действия самого сифона, верхней своей частью находящегося под давлением меньше атмосферного.
Для нормальной работы сифонного трубопровода необходимо, чтобы минимальное абсолютное давление в верхней его части было больше давления насыщенных паров :
,
Давление увеличивается с повышением температуры жидкости.
Таблица 5.2
10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | |
,м | 0,12 | 0,24 | 0,43 | 0,75 | 1,25 | 2,00 | 3,17 | 4,82 | 7,14 | 10,3 |
В табл. 5.2 приведены значения в метрах водяного столба в зависимости от температуры .
♦ Пример 5.2
Из источника водоснабжения вода подается в напорный резервуар (см. рис. 5.4). Расход воды л/с. Высота оси насосной установки над уровнем воды в водоемем. Высота подъема воды в напорный резервуарм. Длина всасывающей трубым. Длина магистральной напорной трубым. Коэффициент гидравлического трения. Суммарный коэффициент местных сопротивлений во всасывающей трубе. Трубы чугунные. В напорном водоводе. Определить диаметры всасывающей и напорной труб, а также потребный напор.
Диаметр всасывающей трубы определим, полагая м/с:
м.
Принимаем диаметр мм. Средняя скорость во всасывающей трубе
м/с.
Гидравлические потери напора во всасывающей трубе
м.
Вакуумметрический напор на входе в насос
м.
Зная кавитационную характеристику лопастного насоса , необходимо сопоставить значения вычисленного и допустимого вакуумметрического напора насоса . В случае насос будет работать в кавитационном режиме. Например,м при расходел/с. В этом случае необходимо установить насос ниже относительно уровня воды в водоеме, т.е.м.
Диаметр напорной трубы принимаем таким же, как и всасывающей: м.
Гидравлические потери в напорной линии
Потребный напор
м.
Зная расход л/с и потребный напорм, можно по каталогу насосов подобрать определенный тип насоса.
♦ Пример 5.3
Какое избыточное давление необходимо поддерживать в закрытом резервуаре с водой, чтобы через вентиль на конце трубопровода проходил расход м3/ч. Вентиль располагается на высоте м, при некотором закрытии вентиля принять. Трубопровод состоит из труб длинойм,мм им,мм. Эквивалентную шероховатость принятьмм. Уровень воды () в резервуаре составляетм (рис. 5.6).
Рис. 5.6. К примеру 5.3
Составляем уравнение Бернулли, приняв первое сечение 1-1 по свободной поверхности воды в закрытом резервуаре, второе сечение 2-2 — за вентилем на конце трубопровода. Плоскость сравнения — горизонтальная, проходящая по оси начального участка трубопровода (см. рис. 5.6):
;
; ;;;;;
,
где — абсолютное давление; — относительное давление.
Таким образом,
Потери напора
.
Полагаем, что потери по длине соответствуют координатной области сопротивления.
Вычисляем по формуле Шифринсона (4.104):
;
;
.
Коэффициент местного сопротивления на входе в трубу ;, колена(табл. П1.4 приложения).
При внезапном сужении трубопровода коэффициент сопротивления вычисляется по формуле И. Идельчика (4.144):
,
где — показатель сужения потока.
;
.
Расход м3/с.
Средние скорости на участках трубопровода:
м/с;
м/с.
Коэффициенты системы первого и второго трубопроводов
;
.
Потери напора
м.
Избыточное давление (принимаем Н/м3)
Па МПа.
Как правильно подобрать диаметр труб?
Дата публикации: 15.08.2018 15:27
При прооектировании системы поверхностного водоотвода необходимо обеспечить пропускную способность трубопроводов, достаточную для отведения как усреднённого, так и залпового объёма стоков. Подобного расчёта требуют также и параметры водоотводного оборудования, такие как площадь сечения каналов и диаметр отводов трапов.
Формулу для расчета оптимального диаметра трубопровода получим из формулы для расхода:
Q=(π*d2/4)*v
где:
Q – расход перекачиваемой воды, м3/с
d – диаметр трубопровода, м
v – скорость потока, м/с
π — число пи = 3.1416…
Отсюда, расчетная формула для оптимального диаметра трубопровода:
d=((4*Q)/(π*v))1/2
Таблица, приведённая ниже, содержит рассчитанные значения пропускной способности для расопространённых сечений трубопроводов:
Диаметр, мм | Площадь внутр. сечения, мм2 | Пропускная способность в литр/сек при скорости | |||||
Наружный | Внутренний | 0,5 м/с | 0,8 м/с | 1,2 м/с | 2,0 м/с | 2,5 м/с | |
63 | 50 | 1964 | 0,98 | 1,57 | 2,36 | 3,93 | 4,91 |
125 | 110 | 9506 | 4,75 | 7,61 | 11,41 | 19,01 | 23,77 |
160 | 150 | 17677 | 8,84 | 14,14 | 21,21 | 35,36 | 44,19 |
225 | 200 | 31426 | 15,71 | 25,14 | 37,71 | 62,85 | 78,56 |
Оценочная скорость потока воды в трубопроводе:
Скорость воды в трубе самотёком — 0,5 м/с. Эту скорость можно взять за основу при расчёте средней пропускной способности.
Скорость воды в трубе коллектора — 0,8 м/с. Эту скорость нужно использовать для расчёта пиковой пропускной способности.
Максимально возможная скорость воды в трубе — 2,5 м/с.
Каким образом идет расчет объема воды в системе отопления дома
Тот, кому приходилось заниматься в своем доме монтажом или реконструкцией отопления, неизбежно искал ответ на вопрос: как вести расчет количества рабочей жидкости для того, чтобы отопление действовало эффективно?Столкнувшись с такой проблемой, каждый, прежде всего, должен понять следующее: общий показатель находится в зависимости от общего объема всех элементов, входящих в отопительную систему дома.
Любая из них к тому же работает в условиях, когда то и дело изменяются такие показатели теплоносителя, как давление и нагрев.
Какие факторы влияют на расчеты
Когда выбираешь котел, также неизбежно занимаешься определением объема теплоносителя, которому предстоит заполнить отопительную систему. Без этого никак не обойтись. Ведь есть необходимость понять, какого объема хватит для того, чтобы оптимальным образом прогреть котел.
Отметим, что и характеристики труб очень важны. Они сказываются на общем показателе. Если есть помпа, то без всяких сомнений можно подобрать трубу, у которой маленький диаметр, и произвести установку секций отопления. Желательно, чтобы их было, как можно больше.
ВАЖНО! Тот, кто выбирает трубы повышенного диаметра, должен учитывать, что при даже максимальной работе котла в этом случае теплоноситель может быть нагрет недостаточно. Значительный объем воды просто остывает перед тем, как добраться до отдаленных точек системы. Понятно, что в данной ситуации понадобятся дополнительные денежные затраты.
Суммарный объем определяется так, чтобы для удовлетворительного нагрева имеющихся комнат было достаточно выбранной мощности котла. Когда показатели допустимой мощности котла превышены, то прибор сильно изнашивается. Ко всему увеличивается потребление электричества.
Если нужен приблизительный расчет объема теплоносителя в системе, то можно учесть такое соотношение: на каждый 1 кВт мощности котла — 15 литров воды. В виде учебного примера давайте определим, сколько носителя необходимо системы, если мощность котла составляет 4 кВт. Ответ: 60 литров! Однако при этом необходимо учитывать следующее: каково количество секций радиаторов, каковы их размеры и использованные материалы.
Представим, что в доме четыре комнаты. Сколько секций нужно поставить? Больше 10-ти секций для каждой комнаты? Это слишком много! В комнате будет жарко, а котел заработает неэффективно. Исходите из того, что одна секция современного радиатора способна эффективно передавать тепло для площади в 2-2,5 кв. метра.
ВАЖНО! Характеристики для теплоснабжения всегда вычисляют перед тем, как приступают к монтажным операциям. Они важны, когда подбираешь комплектующие.
Итак, объем теплоносителя в отопительной системе в целом определяют в качестве суммирования некоторых составляющих:
V = V (радиаторов) + V (труб) + V (котла), где V – это объем.
Иными словами, общий объем определяется с учетом объема носителя в котле, трубах и радиаторах. В расчет не включают параметры расширительного бака. Его необходимо учитывать, только когда рассчитываешь потенциальные критические состояния работы системы.
Есть отдельная формула, по которой рассчитывают объем носителя непосредственно в трубе:
V (объем) = S (площадь сечения трубы) х L (длина трубы)
ВАЖНО! Обращаем внимание, что характеристики у различных производителей отличаются. Это зависит от таких факторов, как тип трубы, технология ее выполнения и материал, из которого она изготовлена. Вот почему специалисты рекомендуют выполнять расчеты по реальному внутреннему диаметру трубы.
В большинстве случаев расчеты ведут специалисты. Тому есть простое объяснение. Обычно протяженность отопительной системы слишком велика. Она также сильно разветвленная.
Расчет объемов для различных типов радиаторов
Современных типов радиаторов, предназначенных для систем отопления, сегодня много. Есть из чего выбирать. Они отличаются по своим функциям. Но не только. У них бывает разная высота. Для определения объема рабочей жидкости в радиаторах первым делом нужно подсчитать, сколько их. Затем умножаем полученное количество на характеристики одной секции.Для определения показателей одного радиатора необходимо воспользоваться данными, которые всегда указываются в техническом паспорте изделия. Если его нет под рукой по каким-либо причинам, то можно использовать усредненные параметры.
Далее предлагаем вам примерные параметры по объему носителя (в литрах) в одной секции радиатора в соответствии с его материалом и типом, а также его примерные габариты в мм (высота/ширина):
— биметаллические (600х80) – 0,25 л
— алюминиевые (600х80) – 0,45 л
— чугунные старого образца (600х110) – 1,7 л
— современные чугунные (плоские, 580х75) – 1 л
Львиная доля моделей всех производителей имеет ±20 мм колебания по ширине. Что касается высоты отопительных радиаторов, то она варьируется от 200 до 1000 мм.
Теперь маленький учебный пример, чтобы оценить, как верно рассчитывают значение. Например, есть пять алюминиевых батарей. В каждой – по 6 секций. Расчет таков: 5 х 6 х 0,45 = 13,5 литра.
ВАЖНО! Чтобы правильно рассчитать объем отопительной системы, у которой дизайнерские радиаторы нестандартной формы, использовать методику, о которой мы только что рассказали, нельзя. В данном случае нужно обратиться к производителю или его официальному дилеру. Только они могут указать объем.
Объем теплоносителя в трубопроводе
Львиная доля всей жидкости находится в трубах. В схеме теплоснабжения именно они занимают значительную долю. Какой объем теплоносителя необходим в такой системе? Какие характеристики труб необходимо учитывать?Диаметр магистрали нужно считать важнейшим критерием. С его помощью можно установить, какова вместимость воды в трубах. Скажем, если диаметр трубы 20 мм, то вместимость будет составлять 0,137 литра на метр погонный. Если диаметр 50 мм, то вместимость будет составлять 0,865 литра на метр погонный.
В отопительной системе допускается применение труб самых разных диаметров. Особенно это характерно для коллекторных схем. Вот почему объем жидкости в отопительной системе определяют отдельно для каждого участка. А потом все необходимо будет суммировать.
ВАЖНО! Если у вас труба из пластика, то диаметр в ней определяют по размерам внешних стенок. Если из металла, то диаметр в ней определяют по размерам внутренних стенок. Для тепловых систем, у которых большая протяженность, это бывает существенно.
Как рассчитать объем расширительного бака?
Чтобы система работала без рисков, необходима установка специализированного оборудования. Она состоит из воздухоотводчика и спускного клапана. А еще необходим расширительный бак, который служит для того, чтобы компенсировать тепловое расширение горячей воды и снижать критическое давление до характеристик, предусмотренных по норме.Основные правила:
— На объем бака должно приходиться от 10 процентов объема системы отопления. Этого вполне хватит, чтобы при нагреве расширить теплоноситель в пределах 45-80°С.
— Если мы говорим о протяженных системах, да еще когда температура теплоносителя существенная, то запас должен составлять не менее 80 процентов от объема всей отопительной системы. Это очень важно для тех котлов, у которых максимальная температура теплоносителя превышает 80-90°С. Это актуально и для паровых отопительных систем от печей.
— 3-5% от объема отопительной системы. Именно таким может быть объем расширительного бака с предохранительным клапаном. Очень важно осуществлять контроль над его работой. Как только срабатывает клапан, систему сразу же пополняют жидкостью.
ВАЖНО! Всегда нужно учитывать давление в системе, когда ведешь расчеты. Как правило, для коттеджей в один или два этажа оно достигает 1,5-2 атмосферы. Учтите, что большинство готовых баков рассчитано именно на указанные показатели. Да еще с запасом.
Но если проектируешь отопительную систему, у которой повышенные объем и характеристики давления (например, для многоэтажных домов), то такой параметр обязательно нужно учитывать. Как обязательно учитывать и вид теплоносителя, когда выбираешь бак. Правило простое: чем легче жидкость в системе – тем крупнее расширительный бак для нее нужен.
О видах теплоносителей
Чаще всего рабочей жидкостью служит вода. Однако без альтернативы в таком деле не обходится. Весьма эффективен и антифриз. Он хорош тем, что не замерзает и тогда, когда температура окружающей среды понижается до той отметки, которая для воды становится критической. То есть по сравнению с водой антифриз выглядит предпочтительнее.Этим и можно объяснить тот факт, что цена на него очень высока. Она не каждому по карману. И потому такую жидкость применяют преимущественно для того, чтобы обогревать строения, у которых площади невелики.
ВОДА, конечно, является доступным ресурсом. Она подойдет для применения в любых отопительных системах. Она практически может стать вечным теплоносителем, если мы говорим о том, что она сочетается с трубами из полипропилена.
Перед тем, как заполнять системы водой, необходимо предварительно подготовить ее. Жидкость необходимо отфильтровать. Это делают, чтобы избавиться от содержащихся в ней минеральных солей. Обычно в таких случаях применяют специализированные химические реагенты. Их можно без проблем купить в магазине. Также из воды в системе обязательно удаляют весь воздух. Если этого не сделать, то снизится эффективность обогрева помещений.
АНТИФРИЗ применяют для того, чтобы наполнять системы зданий, которые отапливаются нерегулярно.
ЖИДКОСТИ, СОДЕРЖАЩИЕ СПИРТ, чтобы заполнять отопительные системы, может позволить себе не каждый. Они дорогие. Что касается качества препаратов, то в них обычно содержится, как минимум, 60 процентов спирта и примерно 30 процентов воды. На иные добавки приходится незначительная доля объема. Смеси воды с этиловым спиртом могут иметь различное процентное содержание.
ВАЖНО! Незамерзающий теплоноситель (при температуре до -30°С) при доле спирта не менее 45 процентов опасна. Он способна воспламениться. Ко всему этил – это яд, который несет явную угрозу человеку.
МАСЛО в качестве теплоносителя в настоящее время применяют лишь в некоторых приборах отопления. Однако в отопительных системах его не применяют. Покупка его обходится дорого. Это основной недостаток масла.
К тому же с маслом тяжело эксплуатировать систему. Оно опасно технологически и долго разогревается до температуры 120°С и выше. А достоинство масла в том, что оно остывает не сразу. Этот процесс длится долго. В результате можно длительный период поддерживать температуру в помещении.
Подведем итоги
Рассчитать, какая емкость рабочей жидкости необходима в системе, да еще без малейших погрешностей, сможет не каждый. Вот почему некоторые, когда не хотят производить подсчеты, делают так. Поначалу они заполняют отопительную систему на 90 процентов. Потом проверяют, как она работает. А затем стравливают воздух, который скопился, и продолжают заполнять систему.
Когда отопительная система эксплуатируется, то уровень теплоносителя снижается, поскольку идут конвекционные процессы. Во время этого процесса котел теряет производительность. Вот почему в резерве должна находиться еще одна емкость, содержащая рабочую жидкость. Так можно будет отследить убыль теплоносителя. Если появится необходимость его пополнить, то это можно будет сделать легко.
Калькулятор объема трубы — Дюймовый калькулятор
Рассчитайте объем трубы с учетом ее внутреннего диаметра и длины. Калькулятор также найдет, сколько весит этот объем воды.
Как найти объем трубы
Объем жидкости в трубе можно определить по внутреннему диаметру трубы и ее длине. Чтобы оценить объем трубы, используйте следующую формулу:
объем = π × d 2 4 × h
Таким образом, объем трубы равен пи, умноженному на диаметр трубы d в квадрате на 4, умноженный на длину трубы h .
Эта формула получена из формулы объема цилиндра, которую также можно использовать, если известен радиус трубы.
объем = π × r 2 × ч
Найдите диаметр и длину трубы в дюймах или миллиметрах. Воспользуйтесь нашим калькулятором футов и дюймов, чтобы рассчитать длину в дюймах или миллиметрах.
Если вы не знаете, каков внутренний диаметр трубы, но знаете внешний диаметр, обратитесь к таблицам общих размеров трубы, чтобы найти наиболее вероятный внутренний диаметр вашей трубы.
Введите значения длины и диаметра в формулу выше, чтобы рассчитать объем трубы.
Пример: рассчитать объем трубы диаметром 2 дюйма и длиной 50 футов
длина = 50 ′ × 12 = 600 ″
объем = π × 2 2 4 × 600 ″
объем = 3,1415 × 44 × 600 ″
объем = 3,1415 × 1 × 600 ″
объем = 1885 дюймов 3
Объем и вес воды для обычных размеров труб
Размер трубы | Объем | Вес | |
---|---|---|---|
дюйм | дюйм 3 / фут | галлон / фут | фунт / фут |
1 / 8 “ | 0. 1473 дюйм 3 | 0,000637 галлонов | 0,005323 фунтов |
1 / 4 “ | 0,589 дюйма 3 | 0,00255 галлона | 0,0213 фунтов |
3 / 8 “ | 1.325 дюйм 3 | 0,005737 галлона | 0,0479 фунтов |
1 / 2 “ | 2.356 дюйм 3 | 0,0102 галлона | 0.0852 фунтов |
3 / 4 “ | 5,301 дюйм 3 | 0,0229 галлона | 0,1916 фунтов |
1 ″ | 9,425 дюйма 3 | 0,0408 галлона | 0,3407 фунтов |
1 1 / 4 “ | 14,726 дюйм 3 | 0,0637 галлона | 0,5323 фунтов |
1 1 / 2 “ | 21. 206 в 3 | 0,0918 галлона | 0,7665 фунтов |
2 ″ | 37,699 дюйм 3 | 0,1632 галлона | 1,363 фунта |
2 1 / 2 “ | 58.905 дюйм 3 | 0,255 галлона | 2,129 фунта |
3 ″ | 84,823 дюйм 3 | 0,3672 галлона | 3,066 фунтов |
4 ″ | 150.8 в 3 | 0,6528 галлона | 5,451 фунтов |
5 ″ | 235,62 дюйма 3 | 1,02 галлона | 8,517 фунтов |
6 ″ | 339.29 дюйм 3 | 1,469 галлона | 12,264 фунта |
Размер трубы | Объем | Вес | |
---|---|---|---|
мм | мм 3 / м | л / м | кг / м |
6 мм | 28274 мм 3 | 0. 0283 л | 0,0283 кг |
8 мм | 50265 мм 3 | 0,0503 л | 0,0503 кг |
10 мм | 78 540 мм 3 | 0,0785 л | 0,0785 кг |
15 мм | 176715 мм 3 | 0,1767 л | 0,1767 кг |
20 мм | 314 159 мм 3 | 0,3142 л | 0.3142 кг |
25 мм | 490,874 мм 3 | 0,4909 л | 0,4909 кг |
32 мм | 804 248 мм 3 | 0,8042 л | 0,8042 кг |
40 мм | 1,256,637 мм 3 | 1,257 л | 1,257 кг |
50 мм | 1963 495 мм 3 | 1,963 л | 1,963 кг |
65 мм | 3 318 307 мм 3 | 3.318 л | 3,318 кг |
80 мм | 5,026,548 мм 3 | 5,027 л | 5,027 кг |
100 мм | 7 853 982 мм 3 | 7,854 л | 7,854 кг |
125 мм | 12 271 846 мм 3 | 12,272 л | 12,272 кг |
150 мм | 17 671 459 мм 3 | 17,671 л | 17. 671 кг |
Как рассчитать поток жидкости через отверстие в трубе
Обновлено 14 декабря 2020 г.
Автор: Дж. Р. Камбак
Распространенной проблемой труб является коррозия. Со временем из-за коррозии в трубе может образоваться дыра, что приведет к утечке. Расчет потока жидкости через отверстие может быть трудным из-за многих переменных, таких как скорость потока жидкости, давление в трубе и плотность жидкости, и это лишь некоторые из них, но не расстраивайтесь. Вы можете найти нужный ответ, выполнив ряд простых шагов.
Шаг 1: Сбор измерений трубы
Получите измерения: диаметр (D) отверстия в трубе и высота (h) поверхности жидкости над отверстием. Убедитесь, что все измерения указаны в одной стандартной единице. Например, 1 дюйм = 0,0254 метра, поэтому, если вы используете дюймы, преобразуйте ваши измерения в метрические единицы.
Шаг 2: Определите площадь поперечного сечения
Рассчитайте площадь поперечного сечения отверстия (A). Разделите диаметр отверстия пополам, чтобы получить радиус.2
Результат будет в квадратных единицах длины.
Шаг 3: Найдите скорость жидкости
Используйте уравнение Бернулли, чтобы найти скорость жидкости (v), если она еще не указана. Если давление жидкости в трубе постоянное (т. Е. Если поток устойчивый), жидкость выходит через отверстие в трубе со скоростью:
v = \ sqrt {2gh}
, где g — ускорение из-за гравитация, 9,8 м / с 2 .
Шаг 4: Найдите объемный расход жидкости (поток)
Умножьте площадь поперечного сечения отверстия на скорость жидкости, чтобы найти объемный расход жидкости (Q):
Q = Av
Это будет объем жидкости, которая покидает отверстие в кубических метрах в секунду.3 \ text {/ s}
Поскольку 1 кубический метр = 61 024 кубических дюйма, Q = 52,9 дюйма 3 / с. Таким образом, 52,9 кубических дюйма воды покидает отверстие в трубе за секунду.
Формула расхода
Расход жидкости — это мера объема жидкости, которая движется за определенный промежуток времени. Скорость потока зависит от площади трубы или канала, по которому движется жидкость, и от скорости жидкости. Если жидкость течет по трубе, площадь равна A = πr 2 , где r — радиус трубы.Для прямоугольника площадь равна A = wh , где w — ширина, а h — высота. Расход может быть измерен в метрах в кубе в секунду ( м 3 / с ) или в литрах в секунду ( л / с ). Литры чаще используются для измерения объема жидкости, и 1 м 3 / с = 1000 л / с .
расход жидкости = площадь трубы или канала × скорость жидкости
Q = Av
Q = расход жидкости ( м 3 / с или л / с )
A = площадь трубы или канала ( м 2 )
v = скорость жидкости ( м / с )
Формула расхода Вопросы:
1) Вода течет по круглой трубе с радиусом 0. 0800 м . Скорость воды 3,30 м / с . Каков расход воды в литрах в секунду ( л / с, )?
Ответ: Расход зависит от площади круглой трубы:
A = πr 2
A = π (0,0800 м) 2
A = π (0,00640 м 2 )
A = 0,0201 м 2
Площадь трубы 0,0201 м 2 .Расход можно найти в м 3 / с по формуле:
Q = Av
Q = (0,0201 м 2 ) (3,30 м / с)
Q = 0,0663 м 3 / с
Расход можно преобразовать в литры в секунду с помощью: 1 м 3 / с = 1000 л / с.
Q = 66,3 л / с
Расход воды по круглой трубе 66,3 л / с.
2) Вода течет по открытому прямоугольному желобу. Желоб 1,20 м шириной , а глубина протекающей по нему воды 0,200 м . Скорость воды идет по круглой трубе с радиусом 0,0800 м . Скорость воды 5,00 м / с . Какой расход воды через желоб в литрах в секунду ( л / с) ?
Ответ: Расход зависит от площади желоба, через которую протекает вода:
A = wh
А = (1.20 м) (0,200 м )
A = 0,240 м 2
Площадь воды, протекающей по желобу, составляет 0,240 м 2 . Расход можно найти в м 3 / с по формуле:
Q = Av
Q = (0,240 м 2 ) (5,00 м / с)
Q = 1,20 м 3 / с
Расход можно преобразовать в литры в секунду с помощью: 1 м 3 / с = 1000 л / с.
Q = 1200 л / с
Расход воды в желобе 1200 л / с .
Расход и его отношение к скорости
Цели обучения
К концу этого раздела вы сможете:
- Рассчитайте расход.
- Определите единицы объема.
- Опишите несжимаемые жидкости.
- Объясните последствия уравнения неразрывности.
Расход Q определяется как объем жидкости, проходящей через некоторое место через область в течение периода времени, как показано на рисунке 1. В символах это может быть записано как
[латекс] Q = \ frac {V} {t} \\ [/ latex],
, где V — объем, а t — прошедшее время. Единицей измерения расхода в системе СИ является 3 / с, но обычно используется ряд других единиц для Q .Например, сердце взрослого человека в состоянии покоя перекачивает кровь со скоростью 5 литров в минуту (л / мин). Обратите внимание, что литровый (L) равен 1/1000 кубического метра или 1000 кубических сантиметров (10 -3 м 3 или 10 3 см 3 ). В этом тексте мы будем использовать любые метрические единицы, наиболее удобные для данной ситуации.
Рис. 1. Скорость потока — это объем жидкости в единицу времени, проходящей мимо точки через область A . Здесь заштрихованный цилиндр жидкости проходит через точку P по однородной трубе за время t .Объем цилиндра составляет Ad , а средняя скорость составляет [латекс] \ overline {v} = d / t \\ [/ latex], так что расход составляет [латекс] Q = \ text {Ad} / t = А \ overline {v} \\ [/ латекс].
Пример 1. Расчет объема по скорости потока: сердце накачивает много крови за всю жизнь
Сколько кубических метров крови перекачивает сердце за 75 лет жизни, если средняя скорость потока составляет 5,00 л / мин?
СтратегияВремя и расход Q даны, поэтому объем V может быть рассчитан из определения расхода.{3} \ end {array} \\ [/ latex].
ОбсуждениеЭто количество около 200 000 тонн крови. Для сравнения, это значение примерно в 200 раз превышает объем воды, содержащейся в 6-полосном 50-метровом бассейне с дорожками.
Расход и скорость связаны, но совершенно разными физическими величинами. Чтобы сделать различие ясным, подумайте о скорости течения реки. Чем больше скорость воды, тем больше скорость течения реки. Но скорость потока также зависит от размера реки.Быстрый горный ручей несет гораздо меньше воды, чем, например, река Амазонка в Бразилии. Точное соотношение между расходом Q и скоростью [латекс] \ bar {v} \\ [/ latex] составляет
[латекс] Q = A \ overline {v} \\ [/ latex],
, где A — это площадь поперечного сечения, а [latex] \ bar {v} \\ [/ latex] — средняя скорость. Это уравнение кажется достаточно логичным. Это соотношение говорит нам о том, что расход прямо пропорционален величине средней скорости (далее называемой скоростью) и размеру реки, трубы или другого водовода.Чем больше канал, тем больше его площадь поперечного сечения. На рисунке 1 показано, как получается это соотношение. Заштрихованный цилиндр имеет объем
.V = Ad,
, который проходит через точку P за время t . Разделив обе стороны этого отношения на t , получим
[латекс] \ frac {V} {t} = \ frac {Ad} {t} \\ [/ latex].
Отметим, что Q = V / t и средняя скорость [латекс] \ overline {v} = d / t \\ [/ latex].Таким образом, уравнение принимает вид [латекс] Q = A \ overline {v} \\ [/ latex]. На рисунке 2 показана несжимаемая жидкость, текущая по трубе с уменьшающимся радиусом. Поскольку жидкость несжимаема, то же количество жидкости должно пройти через любую точку трубы за заданное время, чтобы обеспечить непрерывность потока. В этом случае, поскольку площадь поперечного сечения трубы уменьшается, скорость обязательно должна увеличиваться. Эту логику можно расширить, сказав, что скорость потока должна быть одинаковой во всех точках трубы. В частности, для точек 1 и 2,
[латекс] \ begin {case} Q_ {1} & = & Q_ {2} \\ A_ {1} v_ {1} & = & A_ {2} v_ {2} \ end {cases} \\ [/ latex ]
Это называется уравнением неразрывности и справедливо для любой несжимаемой жидкости. Следствия уравнения неразрывности можно наблюдать, когда вода течет из шланга в узкую форсунку: она выходит с большой скоростью — это и есть назначение форсунки. И наоборот, когда река впадает в один конец водохранилища, вода значительно замедляется, возможно, снова набирая скорость, когда она покидает другой конец водохранилища. Другими словами, скорость увеличивается при уменьшении площади поперечного сечения и скорость уменьшается при увеличении площади поперечного сечения.
Рисунок 2.Когда трубка сужается, тот же объем занимает большую длину. Для того, чтобы тот же объем проходил через точки 1 и 2 за заданное время, скорость должна быть больше в точке 2. Процесс в точности обратим. Если жидкость течет в противоположном направлении, ее скорость уменьшится при расширении трубки. (Обратите внимание, что относительные объемы двух цилиндров и соответствующие стрелки вектора скорости не масштабированы.)
Поскольку жидкости по существу несжимаемы, уравнение неразрывности справедливо для всех жидкостей. Однако газы сжимаемы, и поэтому уравнение следует применять с осторожностью к газам, если они подвергаются сжатию или расширению.
Пример 2. Расчет скорости жидкости: скорость увеличивается при сужении трубы
Насадка радиусом 0,250 см крепится к садовому шлангу радиусом 0,900 см. Расход через шланг и насадку составляет 0,500 л / с. Рассчитайте скорость воды (а) в шланге и (б) в форсунке.
СтратегияМы можем использовать соотношение между расходом и скоростью, чтобы найти обе скорости.{2}} = 1,96 \ text {m / s} \\ [/ latex].
Решение для (b)Мы могли бы повторить этот расчет, чтобы найти скорость в сопле [латекс] \ bar {v} _ {2} \\ [/ latex], но мы воспользуемся уравнением непрерывности, чтобы получить несколько иное представление. Используя уравнение, которое устанавливает
[латекс] {A} _ {1} {\ overline {v}} _ {1} = {A} _ {2} {\ overline {v}} _ {2} \\ [/ latex],
вычисляя [латекс] {\ overline {v}} _ {2} \\ [/ latex] и заменяя πr 2 на площадь поперечного сечения, получаем
[латекс] \ overline {v} _ {2} = \ frac {{A} _ {1}} {{A} _ {2}} \ bar {v} _ {1} = \ frac {{\ pi r_ {1}} ^ {2}} {{\ pi r_ {2}} ^ {2}} \ bar {v} _ {1} = \ frac {{r_ {1}} ^ {2}} {{ r_ {2}} ^ {2}} \ bar {v} _ {1} \\ [/ latex]. {2}} 1,96 \ text {m / s} = 25,5 \ text {m / s} \\ [/ latex].
ОбсуждениеСкорость 1,96 м / с примерно подходит для воды, выходящей из шланга без сопла. Сопло создает значительно более быстрый поток, просто сужая поток до более узкой трубки.
Решение последней части примера показывает, что скорость обратно пропорциональна квадрату радиуса трубы, что дает большие эффекты при изменении радиуса. Мы можем задуть свечу на большом расстоянии, например, поджав губы, в то время как задуть свечу с широко открытым ртом совершенно неэффективно.Во многих ситуациях, в том числе в сердечно-сосудистой системе, происходит разветвление потока. Кровь перекачивается из сердца в артерии, которые подразделяются на более мелкие артерии (артериолы), которые разветвляются на очень тонкие сосуды, называемые капиллярами. В этой ситуации непрерывность потока сохраняется, но сохраняется сумма скоростей потока в каждом из ответвлений на любом участке вдоль трубы. Уравнение неразрывности в более общем виде принимает вид
[латекс] {n} _ {1} {A} _ {1} {\ overline {v}} _ {1} = {n} _ {2} {A} _ {2} {\ overline {v} } _ {2} \\ [/ latex],
, где n 1 и n 2 — количество ответвлений в каждой из секций вдоль трубы.
Пример 3. Расчет скорости потока и диаметра сосуда: ветвление в сердечно-сосудистой системе
Аорта — это главный кровеносный сосуд, по которому кровь покидает сердце и циркулирует по телу. (а) Рассчитайте среднюю скорость кровотока в аорте, если скорость потока составляет 5,0 л / мин. Аорта имеет радиус 10 мм. (б) Кровь также течет через более мелкие кровеносные сосуды, известные как капилляры. Когда скорость кровотока в аорте составляет 5,0 л / мин, скорость кровотока в капиллярах составляет около 0.33 мм / с. Учитывая, что средний диаметр капилляра составляет 8,0 мкм м, рассчитайте количество капилляров в системе кровообращения.
СтратегияМы можем использовать [латекс] Q = A \ overline {v} \\ [/ latex] для расчета скорости потока в аорте, а затем использовать общую форму уравнения непрерывности для расчета количества капилляров как всех другие переменные известны. {2} \ left (0.{9} \ text {капилляры} \\ [/ латекс].
ОбсуждениеОбратите внимание, что скорость потока в капиллярах значительно снижена по сравнению со скоростью в аорте из-за значительного увеличения общей площади поперечного сечения капилляров. Эта низкая скорость должна обеспечить достаточно времени для эффективного обмена, хотя не менее важно, чтобы поток не становился стационарным, чтобы избежать возможности свертывания. Кажется ли разумным такое большое количество капилляров в организме? В активной мышце можно найти около 200 капилляров на 3 мм, или около 200 × 10 6 на 1 кг мышцы.На 20 кг мышц это составляет примерно 4 × 10 9 капилляров.
Сводка раздела
- Расход Q определяется как объем V , протекающий после момента времени t , или [латекс] Q = \ frac {V} {t} \ [/ latex], где V объем и т время.
- Единица объема в системе СИ — м 3 .
- Другой распространенной единицей измерения является литр (л), который равен 10 -3 м 3 .
- Расход и скорость связаны соотношением [латекс] Q = A \ overline {v} \\ [/ latex], где A — площадь поперечного сечения потока, а [латекс] \ overline {v} \\ [ / латекс] — его средняя скорость.
- Для несжимаемых жидкостей скорость потока в различных точках постоянна. То есть
[латекс] \ begin {case} Q_ {1} & = & Q_ {2} \\ A_ {1} v_ {1} & = & A_ {2} v_ {2} \\ n_ {1} A_ {1 } \ bar {v} _ {1} & = & n_ {2} A_ {2} \ bar {v} _ {2} \ end {case} \\ [/ latex].
Концептуальные вопросы
1. В чем разница между расходом и скоростью жидкости? Как они связаны?
2. На многих рисунках в тексте показаны линии тока. Объясните, почему скорость жидкости максимальна там, где линии тока ближе всего друг к другу.(Подсказка: рассмотрите связь между скоростью жидкости и площадью поперечного сечения, через которую она протекает. )
3. Определите некоторые вещества, которые несжимаемы, а некоторые — нет.
Задачи и упражнения
1. Каков средний расход бензина в см 3 / с на двигатель автомобиля, движущегося со скоростью 100 км / ч, если он составляет в среднем 10,0 км / л?
2. Сердце взрослого человека в состоянии покоя перекачивает кровь со скоростью 5,00 л / мин. (a) Преобразуйте это в см 3 / с.(b) Какова эта скорость в м 3 / с?
3. Кровь перекачивается из сердца со скоростью 5,0 л / мин в аорту (радиусом 1,0 см). Определите скорость кровотока по аорте.
4. Кровь течет по артерии радиусом 2 мм со скоростью 40 см / с. Определите скорость потока и объем, который проходит через артерию за 30 с.
5. Водопад Хука на реке Вайкато — одна из самых посещаемых природных достопримечательностей Новой Зеландии (см. Рис. 3).В среднем река имеет скорость потока около 300 000 л / с. В ущелье река сужается до 20 м в ширину и в среднем 20 м в глубину. а) Какова средняя скорость реки в ущелье? b) Какова средняя скорость воды в реке ниже водопада, когда она расширяется до 60 м, а глубина увеличивается в среднем до 40 м?
Рис. 3. Водопад Хука в Таупо, Новая Зеландия, демонстрирует скорость потока. (Источник: RaviGogna, Flickr)
6. Основная артерия с площадью поперечного сечения 1.00 см 2 разветвляется на 18 меньших артерий, каждая со средней площадью поперечного сечения 0,400 см 2 . На какой фактор снижается средняя скорость крови при переходе в эти ветви?
7. (a) Когда кровь проходит через капиллярное русло в органе, капилляры соединяются, образуя венулы (маленькие вены). Если скорость кровотока увеличивается в 4 раза, а общая площадь поперечного сечения венул составляет 10,0 см 2 , какова общая площадь поперечного сечения капилляров, питающих эти венулы? (б) Сколько вовлечено капилляров, если их средний диаметр равен 10.0 мкм м?
8. Система кровообращения человека имеет примерно 1 × 10 9 капиллярных сосудов. Каждый сосуд имеет диаметр около 8 мкм м. Предполагая, что сердечный выброс составляет 5 л / мин, определите среднюю скорость кровотока через каждый капиллярный сосуд.
9. (a) Оцените время, которое потребуется для наполнения частного бассейна емкостью 80 000 л с использованием садового шланга со скоростью 60 л / мин. (b) Сколько времени потребуется для заполнения, если вы сможете перенаправить в нее реку среднего размера, текущую на высоте 5000 м 3 / с?
10.Скорость потока крови через капилляр с радиусом 2,00 × 10 -6 составляет 3,80 × 10 9 . а) Какова скорость кровотока? (Эта малая скорость дает время для диффузии материалов в кровь и из нее.) (B) Если предположить, что вся кровь в организме проходит через капилляры, сколько их должно быть, чтобы нести общий поток 90,0 см 3 / с? (Полученное большое количество является завышенной оценкой, но все же разумно.)
11. (a) Какова скорость жидкости в пожарном шланге с 9. Диаметр 00 см, пропускающий 80,0 л воды в секунду? б) Какая скорость потока в кубических метрах в секунду? (c) Вы бы ответили иначе, если бы соленая вода заменила пресную воду в пожарном шланге?
12. Диаметр главного воздуховода воздухонагревателя составляет 0,300 м. Какова средняя скорость воздуха в воздуховоде, если он каждые 15 минут имеет объем, равный объему внутреннего пространства дома? Внутренний объем дома эквивалентен прямоугольному массиву шириной 13,0 м на 20.0 м в длину на 2,75 м в высоту.
13. Вода движется со скоростью 2,00 м / с по шлангу с внутренним диаметром 1,60 см. а) Какая скорость потока в литрах в секунду? (b) Скорость жидкости в сопле этого шланга составляет 15,0 м / с. Каков внутренний диаметр сопла?
14. Докажите, что скорость несжимаемой жидкости через сужение, например, в трубке Вентури, увеличивается в раз, равный квадрату коэффициента уменьшения диаметра. (Обратное верно для потока из сужения в область большего диаметра. )
15. Вода выходит прямо из крана диаметром 1,80 см со скоростью 0,500 м / с. (Из-за конструкции крана скорость потока не меняется.) (A) Какова скорость потока в см 3 / с? (б) Каков диаметр ручья на 0,200 м ниже крана? Пренебрегайте эффектами поверхностного натяжения.
16. Необоснованные результаты Горный ручей имеет ширину 10,0 м и в среднем 2,00 м в глубину. Во время весеннего стока сток в ручье достигает 100 000 м 3 900 10 / с.а) Какова средняя скорость потока в этих условиях? б) Что неразумного в этой скорости? (c) Что неразумно или непоследовательно в помещениях?
Глоссарий
- расход:
- сокращенно Q , это объем V , который проходит мимо определенной точки в течение времени t или Q = V / t
- литр:
- единица объема, равная 10 −3 м 3
Избранные решения проблем и упражнения
1. 2,78 см 3 / с
3. 27 см / с
5. (а) 0,75 м / с (б) 0,13 м / с
7. (а) 40.0 см 2 (б) 5.09 × 10 7
9. (а) 22 ч (б) 0,016 с
11. (а) 12,6 м / с (б) 0,0800 м 3 / с (в) Нет, не зависит от плотности.
13. (а) 0,402 л / с (б) 0,584 см
15. (а) 128 см 3 / с (б) 0,890 см
Калькулятор объема трубы
Как определить объем трубы?
Цилиндр — это трехмерное твердое тело с конгруэнтными основаниями в паре параллельных плоскостей.Эти основания представляют собой совпадающие круги. Ось цилиндра — это отрезок прямой с концами в центрах оснований.
Высота или высота цилиндра, обозначаемая $ h $, представляет собой перпендикулярное расстояние между его круглыми основаниями.
Далее мы будем рассматривать только правый цилиндр, то есть цилиндр, в котором ось и высота совпадают. Труба или трубка — это полый цилиндр. Полый цилиндр — это цилиндр, который пуст изнутри, а его основание имеет внутренний и внешний радиус. Полый цилиндр имеет основу в виде кольца.3 $$
Формула, теория и уравнения для расчета падения давления в трубе
Когда жидкость течет по трубе, происходит падение давления в результате сопротивления потоку. Также может наблюдаться прирост / потеря давления из-за изменения высоты между началом и концом трубы. Этот общий перепад давления в трубе связан с рядом факторов:- Трение между жидкостью и стенкой трубы
- Трение между соседними слоями самой жидкости
- Потери на трение при прохождении жидкости через фитинги, изгибы, клапаны или компоненты
- Потеря давления из-за изменения высоты жидкости (если труба не горизонтальна)
- Прирост давления из-за любого напора жидкости, добавляемого насосом
Расчет падения давления в трубе
Чтобы рассчитать потерю давления в трубе, необходимо вычислить падение давления, обычно в напоре жидкости, для каждого из элементов, вызывающих изменение давления. Однако для расчета потерь на трение, например, в трубе, необходимо вычислить коэффициент трения, который будет использоваться в уравнении Дарси-Вайсбаха, которое определяет общие потери на трение.
Сам коэффициент трения зависит от внутреннего диаметра трубы, внутренней шероховатости трубы и числа Рейнольдса, которое, в свою очередь, рассчитывается на основе вязкости жидкости, плотности жидкости, скорости жидкости и внутреннего диаметра трубы.
Таким образом, для расчета общих потерь на трение необходимо выполнить ряд дополнительных расчетов.Работая в обратном направлении, мы должны знать плотность и вязкость жидкости, диаметр трубы и свойства шероховатости, вычислить число Рейнольдса, использовать его для расчета коэффициента трения с использованием уравнения Колебрука-Уайта и, наконец, ввести коэффициент трения в коэффициент Дарси. Уравнение Вайсбаха для расчета потерь на трение в трубе.
После расчета потерь на трение в трубе нам необходимо учесть возможные потери в фитингах, изменение высоты и любой добавленный напор насоса. Суммирование этих потерь / прибылей даст нам общее падение давления в трубе. В следующих разделах каждый расчет рассматривается по очереди.
Расчет потерь на трение труб
Теперь нам нужно рассчитать каждый из элементов, необходимых для определения потерь на трение в трубе. Ссылки в следующем списке предоставляют более подробную информацию о каждом конкретном расчете:
Наше программное обеспечение Pipe Flow автоматически рассчитывает потери на трение в трубах с использованием уравнения Дарси-Вайсбаха, поскольку это наиболее точный метод расчета для несжимаемых жидкостей, и он также признан в отрасли точным для сжимаемого потока при соблюдении определенных условий.
Расчет потерь в трубной арматуре
Потери энергии из-за клапанов, фитингов и изгибов вызваны некоторым локальным нарушением потока. Рассеяние потерянной энергии происходит на конечном, но не обязательно коротком участке трубопровода, однако для гидравлических расчетов принято учитывать всю величину этой потери в месте нахождения устройства.
Для трубопроводных систем с относительно длинными трубами часто бывает так, что потери в фитингах будут незначительными по сравнению с общей потерей давления в трубе.Однако некоторые местные потери, например, вызванные частично открытым клапаном, часто бывают очень значительными и никогда не могут быть названы незначительными потерями, и их всегда следует учитывать.
Потери, создаваемые конкретным трубопроводным фитингом, измеряются с использованием реальных экспериментальных данных, а затем анализируются для определения коэффициента K (местного коэффициента потерь), который можно использовать для расчета потерь фитинга, поскольку он изменяется в зависимости от скорости проходящей жидкости. через это.
Наши программы для измерения расхода в трубах позволяют легко автоматически включать потери в фитингах и другие локальные потери в расчет падения давления, поскольку они поставляются с предварительно загруженной базой данных фитингов, которая содержит множество отраслевых стандартных коэффициентов K для различных клапанов и фитингов различных размеров. .
Все, что нужно сделать пользователю, — это выбрать соответствующий фитинг или клапан, а затем выбрать «Сохранить», чтобы добавить его к трубе и включить в расчет потери давления в трубе.
По этой ссылке можно получить дополнительную информацию о коэффициентах K фитинга и уравнении потерь в фитингах.
Расчет потерь компонентов труб
Часто существует множество различных типов компонентов, которые необходимо моделировать в системе трубопроводов, таких как теплообменник или чиллер.Некоторые компоненты могут вызывать известную фиксированную потерю давления, однако более вероятно, что падение давления будет изменяться в зависимости от скорости потока, проходящего через компонент.
Большинство производителей предоставят кривую производительности компонентов, которая описывает характеристики потока и потери напора их продукта. Эти данные затем используются для расчета потери давления, вызванной компонентом для заданного расхода, но сама скорость потока также будет зависеть от потери давления после компонента, поэтому очень сложно смоделировать характеристики потери напора компонента без использование соответствующего программного обеспечения, такого как Pipe Flow Expert.
Потеря давления из-за изменения отметки
Поток в восходящей трубе
Если начальная отметка трубы ниже конечной отметки, то помимо трения и других потерь будет дополнительная потеря давления, вызванная повышением отметки, которая, измеренная в напоре жидкости, просто эквивалентна повышению отметки.
то есть при более высоком уровне жидкости добавляется меньшее давление из-за уменьшения глубины и веса жидкости выше этой точки.
Поток в падающей трубе
Если начальная отметка трубы выше конечной отметки, то, помимо трения и других потерь, будет дополнительный прирост давления, вызванный понижением отметки, которое, измеренное в напоре жидкости, просто эквивалентно понижению отметки.
то есть при более низком уровне жидкости добавляется большее давление из-за увеличения глубины и веса жидкости выше этой точки.
Энергетические и гидравлические марки
Высота жидкости в трубе вместе с давлением в трубе в определенной точке и скоростным напором жидкости может быть суммирована для расчета так называемой линии энергетической градации.
График гидравлического уклона может быть рассчитан путем вычитания скоростного напора жидкости из EGL (линия энергетического уклона) или просто путем суммирования только подъема жидкости и давления в трубе в этой точке.
Расчет напора насоса
Внутри трубопроводной системы часто находится насос, который создает дополнительное давление (известное как «напор насоса») для преодоления потерь на трение и других сопротивлений. Производительность насоса обычно предоставляется производителем в виде кривой производительности насоса, которая представляет собой график зависимости расхода от напора, создаваемого насосом, для диапазона значений расхода.
Поскольку напор, создаваемый насосом, зависит от расхода, определение рабочей точки на кривой производительности насоса не всегда является легкой задачей. Если вы угадываете расход, а затем рассчитываете добавленный напор насоса, это, в свою очередь, повлияет на перепад давления в трубе, что само по себе фактически влияет на скорость потока, который может возникнуть.
Конечно, если вы используете наше программное обеспечение Pipe Flow Expert, оно найдет для вас точную рабочую точку на кривой насоса, гарантируя баланс потоков и давления во всей системе, чтобы дать точное решение для вашей конструкции трубопровода.
Как бы вы ни рассчитали напор насоса, добавленный в вашу трубу, этот дополнительный напор жидкости необходимо добавить обратно к любому перепаду давления, которое произошло в трубе.
Расчет общего падения давления в трубе
Следовательно, давление на конце рассматриваемой трубы определяется следующим уравнением (где все значения указаны в м напора жидкости):
P [конец] = P [начало] — Потери на трение — Потери в фитингах — Потери в компонентах + Высота [начало-конец] + Напор насоса
где
P [конец] = Давление на конце трубы
P [начало] = Давление в начале трубы
Высота [начало-конец] = (Высота в начале трубы) — (Высота в конце трубы)
Напор = 0, если насос отсутствует
Следовательно, перепад давления или, скорее, перепад давления dP (это может быть прирост) между началом и концом трубы определяется следующим уравнением:
dP = Потери на трение + Потери в фитингах + Потери в компонентах — Высота [начало-конец] — Напор насоса
где
P [конец] = Давление на конце трубы
P [начало] = Давление в начале трубы
Высота [начало-конец] = (Высота в начале трубы) — (Высота в конце трубы)
Напор = 0, если насос отсутствует
Примечание. DP обычно указывается как положительное значение, связанное с падением давления на .Отрицательное значение указывает на усиление давления.
Калькулятор объема трубы| Объем, диаметр, вес
Сантехникам и другим подрядчикам нужны подходящие инструменты для решения сложных математических уравнений в полевых условиях, например, для расчета объема трубы, чтобы определить, сколько воды она может выдержать. Калькулятор объема трубы ServiceTitan делает расчет трубы простым и легким.
Измерьте объем труб по внутреннему диаметру и длине. Вы также можете использовать этот калькулятор, чтобы подсчитать, сколько весит объем воды в трубах.
Что такое калькулятор объема трубы?Сантехники и другие квалифицированные специалисты используют калькулятор объема воды в трубе для определения точного объема трубы, а также массы жидкости или веса воды, которая протекает через нее. Этот очень полезный инструмент по сути работает как калькулятор объема жидкости.
Кто пользуется калькулятором объема трубы?Сантехники, подрядчики по ирригации, бригады септиков и работники обслуживания бассейнов постоянно проводят расчеты труб в полевых условиях, чтобы определить правильный размер трубы для установки, определить расход и давление воды или работать над максимальным КПД насоса.
Счетчик объема трубы ServiceTitan также легко вычисляет:
Водоемкость домашних систем отопления.
Расчеты трубопроводов, необходимые для заполнения садового пруда.
Объем трубопроводов, необходимый для установки системы орошения газонов и садов.
Расчет правильного размера трубопровода, необходимый для наполнения бассейна.
Формула объема трубы:
Объем = pi x радиус² x длина
Для расчета размера трубы выполните следующие действия:
- 9130 внутренний диаметр и длина трубы в дюймах или миллиметрах.
Вычислите внутренний диаметр трубы, измерив расстояние от одного внутреннего края, поперек центра и до противоположного внутреннего края.
Используйте те же единицы измерения (дюймы или миллиметры) для измерения длины трубы.
Рассчитайте радиус трубы по ее диаметру. Чтобы получить радиус, разделите диаметр на 2.
Возьмите радиус и возведите его в квадрат или умножьте на себя. Например, 5² = 25.
Вот конкретный пример того, как применить формулу объема трубы:
Полезный совет: Чтобы возвести число в квадрат, умножьте его на само. Чтобы получить число в кубе, умножьте его на само себя три раза.
Калькулятор объема трубы в галлонахЕсли вам нужно знать водоемкость в галлонах, вам нужно будет преобразовать объем воды в метрической системе калькулятора трубы в кубические дюймы.
Кубический дюйм = 1 дюйм x 1 дюйм x 1 дюйм.
дюйм = измерение длины.
Квадратный дюйм = мера площади.
Кубический дюйм = измерение объема.
В 1 галлоне США 231 кубический дюйм.
Плотность воды = 997 кг / м³
Позвольте калькулятору объема водопровода ServiceTitan исключить догадки из уравнения при попытке определить объем воды в трубах, измеренный в галлонах.Для получения информации об общих размерах труб подрядчики также могут обратиться к общей диаграмме объема труб в Интернете.
Калькулятор размера трубы Дополнительный советЕсли вы не знаете, как измерить внутренний диаметр трубы, подумайте о приобретении набора штангенциркулей, которые подходят по внешней стороне трубы. Используйте штангенциркуль для непосредственного измерения внешнего диаметра вместо оценки внутреннего диаметра на основе окружности.
После определения внешнего диаметра обратитесь к этой таблице общих размеров трубы, чтобы точно определить внутренний диаметр вашей трубы.
Объем трубы: нижняя линияОбъем трубы равен объему жидкости внутри нее или занимаемому пространству.
Сантехники и другие подрядчики по обслуживанию стремятся к точным измерениям при работе с трубами для водопровода, вентиляции, кондиционирования, орошения и т. Д., Поэтому они выполняют работу правильно с первого раза.
Калькулятор объема трубы ServiceTitan повышает точность данных, экономит время и сокращает количество отходов, поэтому вы всегда будете знать, что выбираете трубы правильного размера для работы.
Заявление об отказе от ответственности
* Рекомендуемые значения являются добросовестными и предназначены исключительно для общих информационных целей. Мы не гарантируем точность этой информации. Обратите внимание, что другие внешние факторы могут повлиять на рекомендации или исказить их.