Схемы энергосберегающих ламп и наиболее частые их неисправности: Схема энергосберегающей лампы — блог СамЭлектрик.ру – Ремонт энергосберегающей лампы своими руками: видео, схемы

Схемы энергосберегающих ламп и наиболее частые их неисправности: Схема энергосберегающей лампы — блог СамЭлектрик.ру – Ремонт энергосберегающей лампы своими руками: видео, схемы
Мар 09 2020
admin

Содержание

Ремонт и схемотехника энергосберегающих ламп. — 6 Июня 2012 — РАДИО

Ремонт и схемотехника энергосберегающих ламп.

 

Энергосберегающие лампы, или компактные люминесцентные лампы (КЛЛ), можно условно разделить на две части:
1) — сама люминесцентная лампа
2) — электронный пуско-регулирующий аппарат (ЭПРА, электронный балласт), встроенный в цоколь лампы.

Рассмотрим поближе, что там есть в электронном балласте:

— Диоды — 6 шт. Высоковольтные (220 Вольт) обычно маломощные (не больше 0,5 Ампер).
— Дроссель. (убирает помехи по сети).
— Транзисторы средней мощности (обычно MJE13003).
— Высоковольтный электролит. (как правило 4,7 мкФ на 400 вольт).
— Обычные конденсаторы на разной емкости, но все на 250 вольт.
— Два высокочастотных трансформатора.
— Несколько резисторов.

Разберём работу энергосберегающей лампы на примере наиболее распространённой схемы

(лампа мощностью 11Вт).

Схема состоит из цепей питания, которые включают помехо-защищающий дроссель L2, предохранитель F1, диодный мост, состоящий из четырёх диодов 1N4007 и фильтрующий конденсатор C4. Схема запуска состоит из элементов D1, C2, R6 и динистора. D2, D3, R1 и R3 выполняют защитные функции. Иногда эти диоды не устанавливают в целях экономии.

При включении лампы, R6, C2 и динистор формируют импульс, подающийся на базу транзистора Q2, приводящий к его открытию. После запуска эта часть схемы блокируется диодом D1. После каждого открытия транзистора Q2, конденсатор C2 разряжен. Это предотвращает повторное открытие динистора.Транзисторы возбуждают трансформатор TR1, который состоит из ферритового колечка с тремя обмотками в несколько витков. На нити поступает напряжение через конденсатор C3 с повышающего резонансного контура L1, TR1, C3 и C6. Трубка загорается на резонансной частоте,определяемой конденсатором C3, потому что его ёмкость намного меньше,чем ёмкость C6. В этот момент напряжение на конденсаторе C3 достигает порядка 600В. Во время запуска пиковые значения токов превышают нормальные в 3-5 раз, поэтому если колба лампы повреждена, существует риск повреждения транзисторов.

Когда газ в трубке ионизирован, C3 практически шунтируется, благодаря чему частота понижается и генератор управляется только конденсатором C6и генерирует меньшее напряжение, но, тем не менее, достаточное для поддержания свечения лампы.
Когда лампа зажглась, первый транзистор открывается, что приводит к насыщению сердечника TR1. Обратная связь на базу приводит к закрытию транзистора. Затем открывается второй транзистор, возбуждаемый противоположно подключенной обмоткой TR1 и процесс повторяется.
 

Неисправности энергосберегающих ламп

Наиболее частые причины поломки энергосберегающих ламп — обрыв нити накала или выход из строя ЭПРА. Как правило, причиной выхода из строя последнего бывает пробой резонансного конденсатора или транзисторов. Конденсатор C3, часто выходит из строя в лампах, в которых используются дешёвые компоненты, рассчитанные на низкое напряжение. Когда лампа перестаёт зажигаться, появляется риск выхода из строя транзисторов Q1 и Q2 и вследствие этого — R1, R2, R3 и R5. При запуске лампы генератор оказывается,перегружен и транзисторы не выдерживают перегрева. Если колба лампы выходит из строя, электроника обычно тоже ломается, в основном перегорают силовые транзисторы. Если колба уже старая, одна из спиралей может перегореть и лампа перестанет работать. Электроника в таких случаях, как правило, остаётся целой.

Чаще всего лампы перегорают в момент включения.

 

Как правило лампа собрана на защелках.

 

Необходимо её разобрать:

 

Отключаем колбу:

Проверяем Омметром нити накала колбы.

 

Ремонт лампы.

Если перегорела хотя бы одна из спиралей, колбу выбрасываем, если нет, то она рабочая, и не работает схема.

В некоторых случаях, можно восстановить работоспособность лампы со сгоревшей спиралью, замкнув её.Как вариант — замкнуть резистором на 8-10 Oм большой мощности и убрать шунтирующий данную спираль диод, если таковой имеется. Если перегорает предохранитель(иногда он бывает в виде резистора), что обычно случается при пробое конденсатора C3, вероятно неисправными оказываются транзисторы Q1, Q2,как правило, используются транзисторы MJE13003 и резисторы R1, R2, R3,R5. Вместо перегоревшего предохранителя можно установить резистор на несколько Ом.

 

Перед сборкой в цоколе лампы необходимо просверлить вентиляционные отверстия, чтобы сделать температурный режим работы более мягким. Ряд отверстий вокруг места крепления трубки лампы служит для отвода тепла от самой трубки. Ряд отверстий ближе к металлической части цоколя служит для отвода тепла от компонентов балласта. Так-же можно сделать ещё один ряд отверстий — посередине, большего диаметра.

Данная модернизация энергосберегающей лампы поможет существенно продлить срок её службы. Не стоит устанавливать модернизированную лампу в места повышенной влажности (например, ванную комнату).

Наиболее благоприятные условия для работы энергосберегающих лампочек — в открытом виде, либо — широком плафоне или плафоне с вентиляцией, цоколем вверх.

ТИПОВЫЕ СХЕМЫ ВКЛЮЧЕНИЯ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

Ниже предоставлены популярные схемы экономичных ламп дневного света, все они сделаны по одному принципу и, как правило, очень похожи.

 


Схема энергосберегающей лампы Osram


Схема энергосберегающей лампы Philips

 

 

 

 


 

 

 

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Возможная схема включения ламп PHILLIPS

Источник:
http://www.pavouk.org/hw/lamp/en_index.html

устройство, причины неисправностей и методы их ремонта своими руками

На сегодняшний день ассортимент энергосберегающих светильников очень большой. Но лишь лампа дневного света отличается своей удивительной практичностью и экономностью в потреблении электроэнергии. Ремонт энергосберегающих ламп своими руками возможен, если разобраться в принципе её работы.

Люминесцентный светильник (ЛС) – это газоразрядный источник света, в котором, благодаря взаимодействию нитей накаливания и ртути образуется электрический разряд, создающий ультрафиолетовое свечение, которое с помощью люминофора преобразуется в видимый свет. Стоит отметить, что ток, который проходит по нитям, равномерно распределяется по контурам лампы, способствуя шунтированию, уменьшая накал, поэтому данные устройства не нагреваются, что является одним из преимуществ.
Существуют следующие виды люминесцентных осветительных устройств:
1. ЛС с дросселями и стартерами.
Люминесцентные светильники по массовости использования пребывают на пике своей популярности. Они способны экономит до 50% электроэнергии, в отличие от обычных светильников. Для максимального увеличения срока эксплуатационного периода и бесперебойной работы устройства, необходимо использовать такие .


Стартер, аналогично тому, который используют для автомобилей, играет роль пускового механизма. Он нужен, чтобы лампа начала работать. Зачастую, напряжение в момент зажигания значительно выше, чем в сети, поэтому необходим стабилизатор. Также, стартером замыкается и размыкается электронная цепь сети лампы.


Дроссель играет роль трансформатора и способен стабилизировать работу светильника. Он предохраняет люминесцентною лампу от перепадов напряжения и перегревов.
Данный вид характерен и неудобен тем, что при запуске они начинают мигать (данный эффект даёт стартер, он пропускает ток и постепенно разжаривает нити накаливания) первые 2-3 секунды бьют по глазам резкими вспышками света, а потом разжигаются и горят нормально.

2. Люминесцентные лампы без стартера с баланстником.
В отличии от предыдущего вида, в таких устройствах отсутствует стартер. Это позволяет избежать мерцания светильника в первые 2-3 секунды, а запустить его сразу же после включения. Рассматривая схему, можно заметить, что вместо стартера здесь стоит баланстник. Данный элемент относится к пускорегулирующим устройствам, которые ограничивают ток. Но если сравнивать баланстник и стартер, то последний лучше.


3. Энергосберегающие лампы.
Не редко обычные ЛС путают с энергосберегающими, а это не совсем так. Конечно, если сравнивать с лампами накаливания, то любая люминесцентная в разы превосходит их по сроку службы. Но если выбирать между разновидностями ЛС, то среди них есть лидеры продаж – энергосберегающие модели.


Отличительной особенностью этих светильников является их форма, диаметр трубки и пониженное содержание ртути. Благодаря тому, что колба светильника изогнута (за частую она имеет форму спирали), а диаметр – уменьшен, это позволяет экономить электроэнергию на розжиг нитей накаливания, но при этом освещать достаточно большую площадь.

Во всех видах ламп современного типа используют новые технологии, которые обеспечивают надежную обратную связь инвертора, что даёт возможность контролировать силу тока. Инверторы используются в ЭПРА (электронный пускорегулирующий аппарат), что гарантирует их большую долговечность, экономичность и практичность.

Схема энергосберегающих ламп

В зависимости от того, какая именно ЛС, существуют разные виды схем. Рассмотрим распространённую из них для энергосберегающих ламп, чтобы разобраться с её внутренними составляющими.


Рассмотрев рисунок, видно что цепи питания включают: L2 (помехозащищающий дроссель), F1 (предохранитель), четырёх диодных мостов 1N4007 и C4 (фильтрующий конденсатор). В свою очередь схема запуска включает следующие элементы: динистора, R6, D1 и C2, в этой же схеме D2, D3, R1 и R3 являются защитой сети. В некоторых лампах эти диоды не установлены.

Как только светильник включают, динистор, R6 и C2 пускают импульс, который подаётся на транзистор Q2, что позволяет его открыть. После этого, диод D1 блокирует эту часть. Далее транзисторы возбуждают TR1 (трансформатор), и таким образом на нити поступает напряжение. Трубка на резонансной частоте загорается и в этот момент напряжение на С3 (конденсаторе) достигает порядка 700 В. После того, как газ ионизируется, С3 (конденсатор) практически шунтируется.
Рассмотрев данную схему, можно разобраться с принципом работы ЛС и его составляющими.

Типичные поломки

Существуют два варианта, при которых лампа ломается:

  • Повреждений внутренних составляющих светильника;
  • Естественное старение. При выходе лампы из строя необходимо приема ртутных ламп.

Ремонт энергосберегающих ламп своими руками возможен, однако многие не рискуют проводить его, предпочитая попросту заменить сломавшееся оборудование. В то же время ремонтировать подобные светильники достаточно легко, главное – определиться с источником проблемы. Рассмотрим наиболее частые поломки.

Тип поломкиПричинаСпособ устранения
Постоянное морганиеПо тому, как мигает лампа, определяется характер поломи или степень ее износа.

Первой причиной поломки может быть разгерметизация корпуса, что позволяет выходить из основной колбы химический газ, который и дает осветительный эффект.

Второй причиной такой поломки может быть перегоранием электродов, которые находятся внутри ламп.

Третий вариант, если после включения лампочка загорается, но при этом продолжает мерцать, чаще неисправность заключается неисправности таких составляющих компонентов как дроссель или стартер.

Четвёртым вариантом, по которому энергосберегающая лампа мигает после включения может быть даже простые перепады напряжения в сети. Несмотря на то, что практически каждая настольная или обычная лампа имеет защиту, бывают случаи, когда ее недостаточно.

Пятым вариантом может быть случай, когда греется проводка.

В большинстве случаев оптимальным вариантом является полная замена лампы.

Но на настольной лампе мощностью в 11 ватт устранить неполадки легко, когда она сразу же видна, тогда нужно заменить внутреннюю деталь и всё вернётся в норму.

Если же лампа горит одна за одной, обратите внимание на дросселя, на которых мог произойти обрыв проводки. Стоит лишь восстановить проводку или заменить необходимый компонент, после чего проблема будет решена. Однако для этого следует обратить внимание, на такой фактор, как схема энергосберегающей лампы, которая рассматривалась выше.

Если допустить ошибку, то возникают серьезные проблемы, решение которых потребует много времени и сил. Лучше проверять проводку на каждом этапе работ тестером. В таком случае настольную лампу 11 ватт легко проверить и ремонтировать.

НагарОсновным признаком износа или поломки может служить нагар

Неисправности энергосберегающих ламп

Другое название таких ламп «компактные люминесцентные лампы». Их претензии к славе, хотя они стоят дороже, чем лампы накаливания, обусловлены их низкими эксплуатационными расходами в сочетании с ожидаемым длительным сроком эксплуатации, оправдывая тем самым лишние расходы на их покупку.

Неисправности энергосберегающих ламп приводят к уменьшению срока эксплуатации в сравнении с заявленным. Данная статья подготовлена на основе исследования около 30 компактных люминесцентных ламп, чей срок эксплуатации составил около одной десятой от ожидаемого срока. Лампы были мощностью 3 Вт, 7 ВТ, 11 ВТ и 15 Вт.
Первым делом была рассмотрена схема энергосберегающей лампы, показанная выше. Однако это оказалось бесполезно, так как большинство неисправностей не связаны с компонентами схемы. Причины неисправностей энергосберегающих ламп были найдены в условиях их эксплуатации.

Условия эксплуатации компактных люминесцентных ламп

Повреждение электронных компонентов наблюдалось лишь у наиболее мощных энергосберегающих лампочек. А одна из них просто «развалилась» при вскрытии. Ни одна лампа не имела перегоревших предохранителей или входных диодов, но были перегоревшие транзисторы и окружающие пассивные компоненты. Транзисторы обычно горят при воздействии перенапряжения, это легко объясняет причину поломки энергосберегающих ламп.
Когда данные были тщательно проверены, был сделан вывод, что у всех энергосберегающих ламп имелись четкие признаки образования конденсата внутри корпуса электронного балласта, где располагалась электроника. В одной лампе были явные признаки коррозии контактов трубки и попадания влаги на плату. Об этом говорил зеленоватый цвет меди и следы потеков. По ним можно было понять, где собиралась вода. Складывалось впечатление, что КЛЛ были расположены в местах с большим содержанием водяного пара, что привело к возникновению неисправности. Большинство компактных люминесцентных ламп не герметичны и не могут быть использованы в таких условиях. Есть вентиляционные отверстия в виде прорезей, места, где трубка проходит сквозь крышку пластмассового корпуса ЭПРА. Любая вода на монтажной плате вызовет посторонние токи и неизбежные повреждения чувствительных компонентов.

Виды неисправностей энергосберегающих ламп

Большая часть неисправностей энергосберегающих ламп проявлялась однотипно. Во всех КЛЛ не было сбоев работы элементов электронного балласта. Причина поломок была в почернении и перегорании трубок. В течение нескольких сотен часов эксплуатации они темнели, а затем вовсе перегорали, причем нить накаливания перегорала именно в том месте, где труба была более черная. Эта поломка показывает, что нить накаливания работала при температурах, превышающих нормальную.
Испытания проводились на новых лампах. Общий ток трубки, ток проводимости и ток накала измерялись при различных входных напряжениях. Диапазон был ~ 230 В -5..+10% (имитируя стандарты EN50160).

Ток накала:

Ток накала был измерен на конденсаторе соединения двух нитей накаливания (С6). Его значение уменьшилось с увеличением входного напряжения. Это объясняется волновой формой графика и уменьшением тока, протекающего через конденсатор, расположенный между двумя нитями.

Ток проводимости:

Ток проводимости — это ток, протекающий через газ в трубке. Определяется разностью значений общего тока трубки и тока, проходящего через нить. Ток проводимости увеличился на 36% с изменением на 15% входного напряжения. Хотя маркировка энергосберегающих ламп включает 240 В, их запуск происходит при 253 В. Это означает увеличение на 15% тока проводимости трубки. Этого достаточно, чтобы резко сократить срок службы трубки.

Общий ток трубки:

Общий ток трубки — это ток, состоящий из тока проводимости и тока накала, но, как правило, не является суммой величин указанных токов, так как они находятся в разных углах возбуждения (аналог коэффициента мощности). Значение этого тока растет так же, как и ток проводимости, что доказывает, что ток проводимости был достаточно точно измерен.

Пусковой ток:

Пусковой ток измерялся в момент включения лампы с помощью цифрового осциллографа. Скачек тока, проходящего через нить, достигает колоссального пикового значения 600 мА в отличие от рабочего значения 66 мА. Это близко к соотношению 10:1. Кратковременные потери питания, например, при неисправном выключателе или плохом контакте, не повредят нити, но частое включение и выключение лампы приведет к резкому сокращению срока эксплуатации нити.

Выводы

Как оказалось, средние по мощности компактные люминесцентные лампы (7..11 Вт) имеют хороший баланс продуманных схем и трубок, рассчитанных на большие токи. Такие схемы энергосберегающих ламп позволяют им работать при более высоких рабочих напряжениях. Даже при работе от напряжения на 20% больше номинального, лампы не показали никаких признаков поломки после 1000 часов использования.
Испытания более мощных энергосберегающих ламп (15 Вт) показали, что они были подвержены поломкам, когда использовались в неблагоприятных условиях, например, в местах с высоким уровнем водяного пара. Таким образом, можно сделать вывод, что они не подходят для расположения в ванных комнатах, кухнях или внутри холодильника. Эти лампы не подтвердили заявленного производителем срока эксплуатации даже при работе от напряжений чуть выше номинального.
Наконец, неисправности энергосберегающих ламп проявляются из-за непереносимости ими перенапряжения. Можно увидеть деградацию при высоком входном напряжении. Нити накаливания также воспринимают повышенное напряжение, когда газ в трубке начинает истощаться при воздействии высоких рабочих токов.

  • < Назад
  • Вперёд >

Ремонт энергосберегающих ламп

Ремонт трех неисправных энергосберегающих ламп, и видео снятое на разных этапах этого ремонта.
Упор сделан на практические детали. Разборка, сборка, особенности конструкции, процесс демонтажа платы и т.п. Основная информация — в видеоролике, но в заметке есть схемы двух ламп, а так же фото.
Целью заметки является не теория, а практика и наглядная демонстрация некоторых манипуляций, непривычных для тех, кто не сталкивался ранее с таким ремонтом. Видеоролик отражает все основные детали процесса (см. далее).

В чем просто повезло:

  1. Завалялись подходящие детали
  2. Поломки были не очень сложными
  3. Кое-что удалось сделать случайно — методом тыка
Заратустра меня простил.

Столкнулся с ремонтом ламп впервые! Возможны неточности.

Впрочем, именно потому, что столкнулся с этим первый раз, и появились некоторые свежие впечатления и важные детали, которые слишком очевидны для мастеров, но часто ставят в тупик новичка.

Вообще, эти лампы уходят в прошлое, — на смену им идут светодиодные. Но если у кого завалялось несколько неисправных ламп, то имеет смысл засесть за их починку. Во-первых какое-то время они еще послужат. Во-вторых это интересно :).

Как я уже писал выше — вся основная информация находится в видеоролике, а в самой заметке я выложил только некоторые фото и схемы двух ламп (Maxus и e.next) и коротко описал поломки.


Видео ремонта

Рекомендую читать далее только после просмотра видеоролика.


Лампа 1 — Volta

20W, цоколь E27

Поломка: лампа не горит.

В ролике достаточно подробно и наглядно представлен процесс разборки и сборки корпуса лампы, демонтаж нитей и пр. механическая работа, которая может быть интересна таким же как я новичкам в ремонте любых подобных энергосберегающих ламп (это первая в жизни лампа, которую я разобрал).

Ремонт: замена вспухшего высоковольтного электролитического конденсатора и выгоревшей индуктивности в цепи питания.

Цоколевку транзисторов надо проверять тестером! У разных производителей она может отличаться!


Лампа 2 — Maxus

26W, 2700k, цоколь E27

Поломка: лампа не горит.

Здесь была нетипичная и очень интересная неисправность. В этой части ролика присутствует только те этапы ремонта, которые представляют особый интерес. Те этапы, которые сходны ремонту первой лампы, для этой лампы пропущены (разборка, отсоединение нитей колбы и т.п.). Для этой лампы пришлось рисовать схему с платы.

Ремонт: необычное повреждение, приведшее к возникновению частичного КЗ (подробности в ролике).

Цоколевку транзисторов надо проверять тестером! У разных производителей она может отличаться!


Лампа 3 — e.next

11W, 2700k, цоколь E14

Поломка: через несколько секунд после нормального включения, лампа мигает (мерцает) некоторое время, после чего работает нормально, но иногда все-таки «моргает».

Эта лампа отличается от первых двух тем, что она имеет тройную колбу, у нее меньше цоколь (Е14), и простейшая схема. Поломка у этой энергосберегающей лампы оказалась очень простой, но в этой части видеоролика есть некоторые комментарии по схеме и типичным поломкам.

Совет: . Для зарисовки схемы, удобнее всего сфотографировать плату с двух сторон и работать с фото на компьютере:

Ремонт: пропайка контактных площадок платы.


Нити

Добавлено 20.11.2014:

Ремонтировал еще одну лампу и когда вскрывал, то из за перекоса корпуса (!) лопнула колба. В результате — увидел, что внутри колбы все-таки спирали (см. фото ниже).


Перегрев старой лампы

Добавлено 07.02.2018:

«Дикий» ремонт очень старой лампы. Лампа проработала много лет, колба «истощилась» в результате стала потреблять больше ток и сильнее греться. Пластмасса из за перегрева стала хрупкой и треснула — пришлось стянуть ее проволокой. Но самое «дикое» в этом ремонте то, что из за высокой температуры перегревался электролитический конденсатор внутри и почти сразу вздувался и вытекал. Не помогли даже вентиляционные отверстия которые я сделал в корпусе. В результате пришлось вынести конденсатор за пределы лампы при помощи специальных термостойких проводов. Конечно вся эта «дикость» не должна иметь место, не советую это повторять, поскольку было сделано в качестве временного решения, скорее как забавный эксперимент. Но если у Вас экстремальные обстоятельства, нужен свет и нет иных способов выйти из ситуации то в ненадолго можно так выйти из положения.


Типичные поломки

Те поломки, с которыми я столкнулся, не являются типичными (кроме выхода из строя высоковольтного электролитического конденсатора).

Судя по информации от тех, кому приходилось часто сталкиваться с подобным ремонтом, наиболее типичными поломками энергосберегающих ламп являются:

  1. Перегорание нитей накала. Это то, что стоит проверять в первую очередь (сопротивление каждой обычно до 15 Ом).
  2. Пробой резонансного конденсатора, подключенного между нитями лампы (номинал обычно 2,2 nF 1200V).

Также типичными являются следующие поломки:

  1. Выход из строя силового конденсатора (емкость обычно 47 nF). Через него подключен один из выводов лампы.
  2. Выход из строя (вздутие и т.п.) сглаживающего электролитического конденсатора в цепи питания (номинал обычно до 10uF 400V).
  3. Выход из строя конденсатора запускающего с динистором генератор (номинал обычно 22 nF 100V).

А вообще, сгореть в балласте (плате, через которую подключены лампы) может любая деталь. В Интернет, в описаниях поломок попадались даже случаи сгорания резисторов.

Бывают и экзотические неисправности — см. видео выше.


Ссылки

Рекомендую прочитать две очень познавательные статьи (теория и примеры, принцип работы ламп доступным языком):
Энергосберегающие лампы. Изучение электроники КЛЛ (часть 1)
Энергосберегающие лампы. Изучение электроники КЛЛ (часть 2)
Большую часть я не понял, но кое-что уловил… 🙂

Также рекомендую прочесть начиная с сообщения и до конца страницы тему на одном из форумов: radiokot.ru
Там доступно на рисунках со стрелочками описан принцип работы схемы.


Ремонт энергосберегающих ламп. Выход или пустая трата времени?

В современном мире спрос на энергосберегающие лампы увеличивается стремительными темпами. Данная продукция занимает уверенные позиции на рынке электротоваров. Несмотря на то, что гарантия на данные лампы даётся сравнительно высокая, всё же не исключена возможность наличия брака либо других факторов, выводящих из строя лампы. В таком случае есть возможность ремонта своими руками, ведь энергосберегающие лампы стоят не дёшево, а сэкономить всегда хочется.

Что обычно выходит из строя? Что можно починить, а что нет?

Энергосберегающая лампа представляет собой достаточно сложное устройство, которое состоит из пустотелой, заполненной парами ртути и аргона колбы, корпуса, цоколя и электронного блока.

Схема энергосберегающей ртутьсодержащей лампыСхема энергосберегающей ртутьсодержащей лампыОбщая схема энергосберегающей ртутьсодержащей лампы

Сразу условимся, что любые повреждения, повлёкшие нарушение целостности или герметичности колбы, по умолчанию являются фатальными и ремонту не подлежат.

Повреждённая энергосберегающая лампаПовреждённая энергосберегающая лампаПри нарушении целостности колбы происходит попадание паров ртути в окружающую среду, а сам осветительный прибор переходит в разряд не подлежащего ремонту опасного отхода

Все потуги юных техников по ремонту этого рода повреждений повлекут потерю времени и естественную ингаляцию ртутными парами.

Если лампа повреждена в других местах, например, цоколе или корпусе, то ремонт проводить стоит исходя из принципа разумности и целесообразности. Наиболее распространённым является выход из строя в результате эксплуатации или заводского брака электронных частей и деталей лампы. Очень часто перегорают или отпаиваются провода, конденсаторы, нити накаливания, электронные платы и схемы. Возможны механические или температурные повреждения вследствие короткого замыкания или повышения температуры при работе прибора. 

Как отремонтировать своими руками: пошаговая инструкция и схемы

В случае выхода из строя лампы не спешите её выбрасывать. Ознакомьтесь со схемой и устройством изделия, подготовьте необходимые инструменты, и, следуя пошаговой инструкции, вы сможете починить энергосберегающую лампу.

Общая схема энергосберегающей ртутьсодержащей лампыОбщая схема энергосберегающей ртутьсодержащей лампыСхема ртутьсодержащей энергосберегающей лампы
  1. Энергосберегающую лампу необходимо вскрыть, но делать эту процедуру следует довольно осторожно, так как при вскрытии можно отломить цоколь изделия, порвать провода и т. д. Корпус состоит из двух частей, которые скрепляются специальными защёлками. С помощью отвёртки без каких-либо усилий вы сможете разъединить две половинки корпуса лампы. После вскрытия аккуратно высвобождаем электронную схему с проводами.
  2. Выявляем неисправный элемент лампы. Для проверки колбы с нитями накаливания вам понадобится мультиметр. С помощью него вы сможете прозвонить цепь колбы и проверить целостность предохранителя. Если прибор покажет величину 10 Ом, то цепь колбы или другие элементы исправны. В случае показа прибором единицы бесконечности это означает, что цепь или другой элемент лампы находятся в неисправном состоянии. Проверяем электронную схему лампы на наличие подгоревших деталей или отсутствие контакта с элементами устройства. Внимательно просматриваем плату на предмет отсутствия или порыва контакта на дорожках.
  3. Если причина неисправности лампы заключается в перегорании нити накаливания в колбе, то в этом случае необходимо заменить саму колбу, так как починить её невозможно. В случае неисправности в схеме, обнаружив порыв цепи или выход из строя детали, с помощью паяльника можно без труда устранить поломку. Деталь можно приобрести на рынке или в магазине. Чаще приходится менять транзисторы, конденсаторы и резисторы.
  4. После устранения поломки лампу собираем воедино и проверяем в действии. При условии правильной и аккуратной пайки деталей устройство будет функционировать в штатном режиме.

Ремонт энергосберегающих ламп: поэтапные фото

Как ремонтировать на видео

Починить неисправную энергосберегающую лампу только на первый взгляд кажется невозможным. Но творческий подход к делу и желание помогут вам в решении данной задачи, что позволит сэкономить семейный бюджет.

Ремонт энергосберегающих ламп | Электрика в доме

Выгоден ли ремонт энергосберегающих ламп

Срок службы лампы во многом зависит от добросовестности производителя. Невысокого качества лампы выходят из строя еще в начале эксплуатации.  Причинами отказа экономок могут быть резкие броски напряжения сети, особенно в частном секторе, не осторожное обращение с лампами, при котором возможна поломка колбы.

Энергосберегающая лампа в разобранном виде

Так или иначе, а лампы выходят из строя. Вопрос не в том, что выгоден ли ремонт энергосберегающих ламп как экономия средств, а в том что, смогу ли я сделать ремонт энергосберегающих ламп своими руками. Здесь все-таки большую роль играет заинтересованность, чем выгода. Если вы решили заняться ремонтом экономок, тогда не нужно его начинать с одной лампой.

Для восстановления одной лампы нужно где-то приобретать запчасти, тратится на дорогу. Лучше собрать их некоторое количество у знакомых, друзей и соседей.

Совет: По мере выхода из строя энергосберегающих ламп меняйте их на более экономичные с большим сроком службы и не сложным ремонтом, на светодиодные лампы.

Неисправности энергосберегающих ламп

Наиболее часто выходит из строя тонкая стеклянная колба при неосторожном обращении-это нарушение целостности колбы, трещины и обрыв нити накала. Энергосберегающие лампы редко доживают до срока службы в 8000 часов, еще раньше у них наблюдается потемнение у краев колбы, отслаивание люминофора со стенок колбы.

В результате яркость свечения падает. Электронный блок питания (балласт) более живуч, в основном он реагирует на скачки напряжения в сети. Также у этих ламп недостаточно отверстий для вентиляции, в результате электронные компоненты перегревается и выходят из строя. Поэтому по окончании гарантийного срока, желательно сделать дополнительные отверстия в корпусе лампы. Делать их нужно только в разобранном виде, чтобы не повредить компоненты платы.

Особенно боится температуры электролитический конденсатор, который высыхает и теряет емкость. Частой причиной отказа лампа является обрыв низкоомного резистора (предохранителя), который через провод припаян к цоколю лампы и на него одета термоусадочная трубка. Также выйти из строя могут любые элементы электронной платы лампы, транзисторы, диоды, конденсаторы, дроссель, трансформатор, резисторы и даже возможен обрыв проводов.

Ремонт энергосберегающих ламп своими руками

Для визуальной диагностики лампы нужно раскрыть корпус. Аккуратно, тонкую и плоскую отвертку просовывают в паз на соединении двух частей корпуса, поворачивая ее раздвигают две половинки корпуса. Таким образом отверткой проходят по кругу зазора, пока половинки корпуса не разделятся.

Разделив две части корпуса, осторожно снимают скрученные провода нитей накала со штырей платы. Поддев отверткой снизу штыря спираль легко снимается, далее отсоединяют корпус с колбой. Для того чтобы отсоединить плату балласта, нужно отпаять два конца провода с платы. Один провод соединен с резистором в изоляционной термоусадке.

Разборка энергосберегающей лампы

Это и есть предохранитель. Его проверяют на сопротивление, оно должно быть несколько ом. Если предохранитель целый, тогда неисправность ищут дальше, если нет меняют его на резистор 8-10 Ом.  Далее прозванивают нити накала, которые должны иметь сопротивление 10:15 Ом. При исправных накалах собирают лампу в обратном порядке. Включаем и радуемся, эконом лампа работает. Если предохранитель и накал целые, неисправности ищут на плате питания.

Две части энергосберегающей лампы

Внимательно осматривают плату на предмет обрыва дорожек, вспучивания корпуса конденсаторов, черного нагара на деталях. Возможно оплавление трансформатора и дросселя. Если неисправность легкая, тогда попробуйте ее исправить. Когда неисправность не найдена — прозванивайте тестероми диоды, двусторонний стабилизатор, транзистор. Как прозванивать?

Возьмите другую такую же исправную плату и прозванивая ее элементы сравните с элементами неисправной платы. Запомните — у транзисторов, диодов, стабилитронов, микросхем и конденсаторов соседние ножки прозванивают одной полярностью (тестер в режиме измерения сопротивления 1-10 ком), а затем меняет щупы тестера на обратную и далее прозванивают вывода элементов с другой полярностью.

Прозвонка нитей накала лампы

Если не нашли неисправность не расстраивайтесь, из вашей кучи не рабочих экономок найдите рабочую плату по внешнему виду и ставьте взамен неисправной.

Еще совет: При ремонте подбирайте платы и колбы одной мощности, или на плату большой мощности можно ставить колбу меньшей мощности, все будет работать. Если сделать наоборот, когда на плату рассчитанную, допустим на 7 Вт поставить колбу мощностью 15-20 Вт плата не выдержит такую нагрузку и откажет.

Ремонт энергосберегающих ламп со сгоревшей спиралью

Да действительно, имеется такая возможность восстанавливать работу колбы экономки со сгоревшей спиралью. В случае одной нерабочей спирали нужно измерить сопротивление оставшейся целой нити накала, оно должно быть несколько ом, что зависит от мощности лампы (толщины нити накала).

Если энергосберегающая лампа мощностью до 15 Вт, берите резистор 1 Вт с сопротивлением равным или близким к сопротивлению целого накала. Для ламп больше 15 Вт, мощность резисторов выбирается 2 Вт. Этот резистор припаивают к штырькам на плате не рабочего нити накала, и затем наматывают на штыри провода от нитей накала.

Электрическая сема энергосберегающей лампы

Для того чтобы зажечь лампу высоковольтный конденсатор (по схеме включен между накалами лампы) разряжается через нити накала и пары ртути мощным импульсом тока. И конденсатору без разницы оборванны нити накала или нет, все равно мощный импульс тока зажжет пары ртути. А вот для поддержки свечения паров ртути нужна высокая температура нитей накала. В данном случае одной нити накала вполне достаточно для поддержания свечения энергосберегающей лампы.

Разве что немного уменьшится яркость лампы, и то не факт. Дополнительный резистор в цепи сгоревшего накала нужен для того чтобы не нарушать режим работы схемы электронной платы. Поэтому ставят резистор с сопротивлением накала — имитация целой нити накала. Вот видите, ремонт энергосберегающих ламп не труден, нужно только начать и скоро сами будете консультировать других.

Тоже интересные статьи

устройство, причины неисправностей и методы их ремонта своими руками

Экономные осветительные приборы известны благодаря своей долговечности, но из-за неправильного обращения их срок службы может значительно уменьшиться. Предлагаем рассмотреть, как осуществляется ремонт энергосберегающей лампы своими руками, и как починить светильник со сгоревшей спиралью.

Виды неисправностей

Перед тем, как начинать починку лампочки, нужно определиться с родом поломки. Существует несколько типов неисправностей:

  1. Заводские;
  2. Эксплуатационные.

Первые – это поломки, которые возникают из-за недобросовестности производителей. К ним можно отнести расхождение контактов, неправильная форма цоколя, и т.д. При этом эксплуатационные неисправности – те, что возникают в связи с использованием источника света. Это обычное перегорание спирали, нарушение целостности колбы, разрыв проводов и т.д.

Как починить лампу

Чтобы починить энергосберегающую лампу, Вам нужно выяснить род поломки. Далее изучить конструкцию светильника. Энергосберегающая лампа состоит из специальной колбы и схемы, которая отвечает за появление света, или проводов питания. Разобрать светильник можно в домашних условиях, если у Вас есть тонкий нож или отвертка. Разъединив составляющие, Вы сможете более подробно изучить конструкцию.


Разбираем лампу с помощью ножа

Обратите внимание, что не все энергосберегающие лампы можно ремонтировать самостоятельно или вообще разбирать. Скажем, люминесцентные содержат в колбе вредные газы и соединения, которые могут стать причиной отравления. Довольно опасны ртутные светильники. Если у Вас сломалась лампа такого типа, то ни в коем случае не начинайте ремонт или утилизацию без специалистов.

Видео: Как починить энергосберегающую лампочку своими руками

И еще одно интересное видео:

Для начала рассмотрим, что сделать, если электрическая лампа сгорела. Светильник сгорает из-за двух причин:

  1. Перегорела спираль накала;
  2. Вылетела балластная схема.

Определить их можно только при разборе электронного устройства. Вам нужно взять в руки энергосберегающую лампу, на нижней части колбы Вы увидите небольшую впадину. На фото это место показано стрелками. Аккуратно, чтобы не повредить корпус, вставляете туда тонкий но или отвертку, и слегка приподнимаете корпус. Очень важно, чтобы колба не лопнула, иначе в ремонте не будет смысла.


Перед Вами разобранная лампа, у которой провода соединены методом простой перемотки, без пайки и прочих термических способов крепления. Внутри прибора Вы можете увидеть округлую плату, которая из-за перегрузок немного потемнела. По её краям расположены несколько штыков, квадратной формы, они выполняют роль своеобразных клемм. К этим клеммам присоединяются провода питания, по которым подается электрический ток. Провода к штыкам примотаны, при повторном соединении ни в коем случае не паяйте их даже точечным методом.


После того, как Вы раскрутили провода, нужно проверить каждую спираль при помощи мультиметра. Таким образом, выясняется, какая из них сгорела. После прозвона и выяснения рода поломки, сгоревшая спираль заменяется новой.


Если Вы хотите проверить исправность электронного балласта, то нужно обязательно изучить его конструкцию. Принципиальная схема этой детали лампы очень похода на стандартный импульсный блок. Основными элементами являются конденсатор, резистор и динистор. Для защиты схемы от сгорания необходимы выпрямляющие диоды, а также резисторы. Когда лампа включается в цепь, резистор заряжает конденсатор. Когда деталь нормально заряжены, динистор включается и формирует импульс, который в вою очередь подключает транзистор. После этого цикла, конденсатор снова разряжается, а выпрямительный диод начинает шунтировать сеть. Далее транзисторы запускают генератор лампы и трансформатор.


С6 – это силовой конденсатор, который через себя пропускает электрический ток на проволоку накаливания. При этом ток также проходит фильтрацию на конденсаторе и проверку на индуктивность. Мощность, с которой горит лампа, определяется при помощи резонансного конденсатора. Частота контура при работе этой детали несколько снижается, т.к. у силового конденсатора значительно больше емкость. Во время работы деталей, транзистор находится в открытом состоянии, а сердечник трансформатора насыщается. Когда он полностью заряжен, происходит обратный процесс, и так б

Отправить ответ

avatar
  Подписаться  
Уведомление о